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Users and resources in online social networks (OSNs) are interconnected via various types

of relationships. User-to-user (U2U) relationships form the basis of the OSN structure, the so-

cial graph, and play a significant role in specifying and enforcing access control. In fact, U2U

relationship-based access control (ReBAC) has been adopted as the most prevalent approach for

access control in OSNs, where authorization is typically made by tracking the existence of U2U

relationships of certain types and/or depth between the access requester and the resource owner.

We propose a novel ReBAC model for OSNs that incorporates different types of relationships

and utilizes regular expression notation for policy specification, namely UURAC (User-to-User

Relationship-based Access Control). Authorization policies are defined in terms of the patterns of

relationship path on social graph and the hopcount limit of the path. In addition, two path checking

algorithms are developed to determine whether the required relationship path for a given access

request exists, and proofs of correctness and complexity analysis for the algorithms are provided.

The UURAC model is implemented and evaluated to validate our approach.

We subsequently integrate attribute-based policies into relationship-based access control. The

proposed attribute-aware ReBAC enhances access control capability and allows finer-grained con-

trols that are not otherwise available in ReBAC.

Today’s OSN applications allow various user activities that cannot be controlled by using U2U

relationships alone. To enable a comprehensive ReBAC mechanism, we develop the URRAC

(User-to-Resource Relationship-based Access Control) model to exploit user-to-resource (U2R)

and resource-to-resource (R2R) relationships in addition to U2U relationships for authorization
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decision. While most of today’s access control solutions for OSNs only focus on controlling

user’s normal usage activities, URRAC model also captures controls on user’s administrative activ-

ities. Simple specifications of conflict resolution policies are provided to resolve potential conflicts

among authorization policies.

The objective of this research is to demonstrate that greater generality and flexibility in pol-

icy specification and effective access evaluation can be achieved in OSNs using relationship type

patterns and attributes.
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Chapter 1: INTRODUCTION

Online social networks (OSNs) have emerged and thrived rapidly over the past several years and

now have billions of users worldwide. A recent survey found that 73% of online adults use a social

network of some kind [21]. Many existing OSNs facilitate convenient environments and various

kinds of services for participating users to regularly make new connections, interact and share

information with each other for a variety of purposes. The sharing and communications are based

on social connections among users, namely relationships.

Since most users join OSNs to keep in touch with people they already know, they often share

a large amount of sensitive or private information about themselves, including demographic infor-

mation, contact information, education information, blog posts, pictures, videos, comments, and

so on. A majority of the information is made public without user’s careful consideration. Given

the rising popularity of OSNs and the explosive growth of information shared on them, OSN users

are exposed to potential threats to security and privacy of their data. Security and privacy incidents

in OSNs have increasingly gained attention from both media and research community [8, 26, 30].

These incidents highlight the need for effective access control that can protect data from unautho-

rized access in OSNs.

Access control in OSNs presents several unique characteristics different from traditional access

control. In mandatory and role-based access control, a system-wide access control policy is typ-

ically specified by the security administrator. In discretionary access control, the resource owner

is responsible for defining access control policy. However, in OSN systems, users expect to regu-

late access to their resources and activities related to themselves. Thus access in OSNs is subject

to user-specified policies. Other than the resource owner, some related users (e.g., user tagged

in a photo owned by another user, parent of a user) may also expect some control on how the

resource or user can be exposed. To prevent users from accessing unwanted or inappropriate con-

tent, user-specified policies that regulate how a user accesses information need to be considered in

authorization as well. Thus, the system needs to collect these individualized partial policies, from
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both the accessing users and the target users, along with the system-specified policies and fuse

them for the collective control decision.

Moreover, authorization decisions in traditional access control models (e.g., discretionary ac-

cess control, mandatory access control, role-based access control, etc.) are primarily based on

identities and attributes of subjects and objects, where attributes may include group or role mem-

berships, access control lists, capability lists, and security labels, etc. However, identity and

attribute-based approaches fail to cope with the scalability and dynamicity of OSNs. In OSNs,

it is not practical for users to specify all of the authorized users who can access their information

in a traditional way.

Instead, access control in OSNs is typically based on the relationships among users on the

social graph. This type of relationship-based access control (ReBAC) [23, 25] has emerged as the

most prevalent access control mechanism for OSNs. With ReBAC, resource owners can specify

access control of their information based on their relationships with others, without knowing the

user name space of the entire network or all their possible direct or indirect contacts. Accordingly,

relationship-based access control has been recognized as a key requirement for security and privacy

in OSNs [27], and has been commonly adopted in real world OSN systems since it keeps the

balance between ease-of-use and flexibility.

1.1 Motivation

Despite its popularity in both theory and practice, current ReBAC is still far from perfect. Most

existing OSN systems enforce a rudimentary and limited ReBAC mechanism, offering users the

ability to choose from a pre-defined policy vocabulary, such as “public”, “private”, “friend” or

“friend of friend”. Google+ and Facebook introduced customized relationships, namely “circle”

and “friend list”, providing users richer options to differentiate distinctly privileged user groups.

Meanwhile, researchers have proposed more advanced ReBAC models [9,11–15,23–25,39]. These

proposals explore more flexible and expressive solutions than provided by current commercial

OSNs. Policies in [9, 11–15, 23, 25] can be composed of multiple types of relationships. [13–15]
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also adopt the depth and the trust value of relationship to control the spread of information. Al-

though only having the “friend” relationship type, [24] provides additional topology-based poli-

cies, such as known quantity, common friends and stranger of more than k distance.

One common characteristic found in most of these commercial and academic solutions is that

they mainly focus on user-to-user (U2U) relationships between the accessing user and the resource

owner, and at least implicitly assume ownership is the only manifestation of user-to-resource (U2R)

relationships. However, this is not sufficient to capture many user activities found in today’s OSN

applications, where users can perform actions that create relationships between users and resources

other than ownership. For example, tagging a friend on a photo will create U2R relationship

between the photo and the tagged user which consequently may allow friends of the tagged user

to access the photo. Hence the tagged user may want to control other related users’ access to

the photo. Likewise, users’ actions can establish resource-to-resource (R2R) relationships such

as photos under the same album, comments to a blog post, etc. To enable a fully expressive

relationship-based access control, it is necessary to exploit U2R and R2R relationships in addition

to U2U relationships for authorization policies and decisions.

Moreover, most ReBAC systems merely focus on type, depth or strength of the relationships,

lacking support for some topology-based and history-based access control policies that are of

rich social significance. For example, they cannot express policies such as “at least five com-

mon friends” or “friendship request pending” that require global or contextual information of the

social graph. In addition to relationships, attributes of users (such as age, location, identity) also

need to be taken into account when determining access. Without introducing attributes, policies

like “a common friend named Tom” cannot be described in current ReBAC languages. We suggest

that combining these attributes of users and relationships with ReBAC would provide users more

versatile and flexible access control on their data.

To show motivation for our work, let us start with some examples that cannot be properly

addressed by current access control solutions.
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1.1.1 Related User’s Control

Due to the various functionality offered by today’s OSNs, there exist several different types of

relationships between users and resources in addition to ownership. Consider an example where

Bob posts a photo that contains Alice and Carol’s image in it and tags them. OSNs usually allow

only the owner Bob to choose the audience for that photo, regardless of whether or not Alice and

Carol may wish to release their images. To enable Alice and Carol some control capability on

the photo, their relationships with the photo, which is not ownership, should be considered for

authorization purposes. After the photo has been shared by Bob’s friends several times, more and

more users from different neighborhoods in the network come to view the photo and comment on

it. When Dave reads through all the comments in Bob’s photo and becomes curious about another

user Eve who has commented recently, he decides to poke her to say hello. In this case, Dave and

Eve are connected through the photo, not through another user (such as the owner of the photo

Bob). Also, users may share or like the blog posts or videos posted by others, and gain the ability

to determine how the shared/liked copy of the original content or the fact of sharing and liking

activities can be seen by others. Consider another scenario where Betty finds a weblink originally

posted by Ed interesting and then shares it with her friends. From this activity, she acquires the

ability to decide how the weblink can be available to others.

1.1.2 Administrative Control

In OSN, users are allowed to configure access control policies for their own content and activities.

Allowing U2R relationship-based access control further enables users to specify policies for con-

tents related to them and activities of other related users. Hence, policy administration becomes

very important since allowing individual users to specify policies requires the OSN to ensure that

only the right users are authorized to do it. Moreover, since a change of relationships may result in

a change of authorization, the creation and termination of relationships needs to be treated differ-

ently from usage activities to normal resources. Thus, access control in OSNs has to address the
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management of access control policies and relationships in addition to normal usage activities by

means of U2U, U2R and R2R relationships. Carminati et al [11, 12] introduced a framework that

allows system administrators to specify administrative policies in ontology-based representations.

However, they did not provide a policy management model for managing policies and resolving

policy conflicts. Most of the other relationship-based access control models do not incorporate

users’ administrative activities.

We address administrative activities, such as policy specifying, relationship invitation and re-

lationship recommendation, separate from normal activities. Let us consider an example where

parental control, such as allowing parents to configure their children’s policies, is featured in the

system. Bob’s mother Carol may not want Bob to become friend with her colleagues, to access

any violent content or to share personal information with others. Both Bob and Carol can spec-

ify policies for these activities, thus the system needs a strategy to resolve any potential conflicts

among policies from different users.

1.1.3 Attribute-aware Relationship-based Access Control

ReBAC takes advantage of the structure of OSN systems and offers users a simple and effective

way for configuring their access control policies. However, ReBAC suffers from two shortcomings.

First, most of the ReBAC models rely on the type, depth, or strength of relationships, but cannot

exploit more complicated topological information contained in the social graph. For example,

many ReBAC proposals can determine whether there exists a qualified relationship path on the

graph, but their policy languages cannot express requirements on multiple occurrences of such

paths. Second, ReBAC generally lacks support for various contextual information of users and

relationships available in OSNs. Such contextual information also called attributes can be utilized

for finer-grained access control. In addition to the normal relationship information, some of the

attribute examples are user’s name, age, role, location, trust in other users, duration of relationships,

and so on. Let us consider two examples of attribute-based polices that are applied on ReBAC.

Common friends. The very nature of OSNs encourages new connections. To help users
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expand their connections, OSNs normally suggest some new connection candidates to a user based

on number of common friends they share, for example. This is typically used as a tool for social

promotion, but it can be applied to access control as well. Alice can allow a user who is not

currently her friend but shares a certain number of common friends with her to access some of her

contents. She can also specify that Bob must be a common friend of her and an access requester in

order for the requester to get access. In regular ReBAC system, these policies cannot be expressed

as they only check the existence of certain relationships but do not count the number of such

relationships. Also, due to lack of support for node attributes, ReBAC policies are not able to

distinguish particular users on the relationship paths.

Transitive trust. Consider a scenario where relationships are associated with an attribute of

trust value, which denotes the strength of connection between two users. Since each user only

knows a few direct friends, it is expected that more users are likely to be connected indirectly

through their existing connections. Trust values between direct connections are used to compute

the transitive trust, indicating the strength of such indirect relationships. A line of research has

been addressing the area of trust in OSNs [28, 29, 39], where trust is combined with relationship

type and depth as parameters to determine access. However, many limitations can be found in

these works. Some only consider a single relationship type. Others consider the case of multiple

types but lack support for trust comparison and calculation between different types or paths. If we

treat trust as an attribute of relationships, it can be mixed with other attributes of users and thus

enable finer-grained access control policies, despite the multiple relationship types or paths.

1.2 Problem Statement

OSNs offer users various types of user interaction services, including chatting, private messaging,

poking and social games. As OSN systems mature, various types of resources need to be protected,

such as user sessions, relationships among user and resources, access control policies and events

of users. However, as we identified earlier, traditional access control models are not adequate for

today’s OSN environment, because OSN systems access control is based on relationships found in
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social graph.

Many of the existing OSN systems enforce a coarse-grained and limited relationship-based

access control, mainly based on U2U relationships between the accessing user and the target user.

When a user requests access to a resource, current OSNs rely on an implicit ownership relationship,

between the resource and its owner, hence the authorization of such U2R access is still based on

the underlying U2U relationships. In today’s fast evolving OSNs, we have identified various types

of relationships between users and resources in addition to ownership. There are many scenarios

where related users other than the owner want to exert their control capability on the resource

they share certain types of U2R relationships with. Thus there exhibits a huge gap between users’

mental model and the control offered by the systems.

As a consequence of allowing U2R relationships, users are able to specify policies for others,

hence policy administration has to be properly managed to ensure only the right users can do so.

Furthermore, since multiple users can express access control policies for a user or a resource, it

is expected that there will be several policies applicable to the same access request which will

inevitably raise conflicts. For example, Bob sets his policy so that he can get friendship request

from anyone in the system, while at the same time policies defined by his parents may only allow

him to receive such request from his friends of friends. To resolve such conflicts, it is necessary

to introduce conflict resolution policies, which are meta-policies about how authorization policies

are to be interpreted and how policy conflicts are resolved.

Using relationships alone is often not sufficient to enforce various security and privacy require-

ments that meet the expectation from today’s OSN users. In addition to relationships, we believe

that it is beneficial to incorporate attribute-based access control into an existing ReBAC model.

A new policy specification language needs to be formalized to address the access requirements in

terms of the attributes of users, relationships and social graphs.
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1.3 Scope and Assumptions

Protection of security and privacy in OSNs can be divided into several aspects, including user’s

identity anonymity, user’s content privacy, user’s communication privacy, and so on [56]. Many

efforts have been made by the community to solve each of these concerns. The aspect of user’s

content privacy implies the need for access control. Access control is of paramount importance

in OSNs, since unauthorized access to user’s contents may cause undesirable or damaging conse-

quences to users. It is also the primary focus in this dissertation. In particular, we aim to improve

the relationship-based access control mechanism for OSNs.

To offer richer functionality, many OSNs have launched social networking platforms that en-

able third-party developers to contribute applications to the social network through the use of APIs

(application programming interfaces). With the support of OSN platforms, third-party applications

(TPAs) have become highly popular in a very short period of time. The emergence of TPAs also

poses severe privacy risks to users. For example, TPAs usually receive privileges equal to the TPA

users with respect to social graph traversal, and thereby gain access to an abundance of users’ in-

formation regardless of the actual legitimate needs. Moreover, these applications are available via

OSNs but are running on external servers outside the OSN’s control. Once they acquire the data,

they can use or dispose it in whatever way they want without user or OSN consent. There is no

control regarding the usage of user data once it is released to the TPA. The developers of TPAs can

aggregate such data and accrue benefit by using or selling the data. We recognize the importance of

the security and privacy issues regarding TPAs, and have developed an access control framework

that provides flexible and fine-grained controls on how TPAs can access OSN user’s data [18].

However, like most other research on access control in OSNs, this dissertation concentrates on

access between regular users in the system, leaving the issues of TPAs out of scope.

Relationships in OSNs are usually one-to-one, and require an explicit procedure of initiation

and termination. However, as more and more functions and services become available in OSNs,

some unconventional relationships are being introduced to OSNs, such as temporary relationships
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(e.g., vicinity) and one-to-many relationships (i.e., network, group). These new relationships can

be potentially exploited for the purpose of access control as well. But we decided to only focus

on the conventional relationships in OSNs, and leave the unconventional ones as a possible future

direction of this work.

This work is based on the following assumptions.

• Unlike some privacy preservation techniques proposed in [31,40,41], our threat model does

not include OSN providers. Since all of the information provided by users is stored in OSN

servers and processed by OSN supported services, OSN providers can easily monitor and

analyze these data for their own purposes, such as targeted advertising, surveillance, data

mining, user experience improvement, etc. Although we have witnessed the ongoing debates

about ethics of the OSN sites, we still believe that totally preventing OSN providers from

user’s real data is not realistic and is conflicting with the business model of OSN providers.

• We assume that user’s computers are not compromised by malicious intruders or malwares.

We also do not consider the case when an attacker gains unauthorized access to a site’s code

and logic. The enormous amounts of information OSNs process each and every day end up

making it much easier to exploit a single flaw in the system. However, in this work we only

aim to overcome the limitations of the access control mechanisms provided by current OSN

systems.

1.4 Thesis

The central thesis of this dissertation is given below.

Users and all of the resources related to users are interconnected through U2U, U2R and

R2R relationships, which form the basis of an OSN system, the social graph. By utilizing regular

expression notation for policy specification, it is efficient and effective to regulate access in OSNs

in terms of the pattern of relationship path on the social graph and the hopcount limit on the path.

Integrating attribute-based policies further enables finer-grained controls that are not available in
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ReBAC alone.

1.5 Summary of Contributions

The major contributions of this research are stated as follows:

• Develop an access control framework for OSNs based on relationships, supporting the es-

sential characteristics that need to be addressed by OSN access control.

• Further build two ReBAC models that utilize different kinds of relationships, using regular

expression notation. They incorporate greater generality and flexibility of path patterns in

policy specifications, including the incorporation of inverse relationships.

• Integrate attribute-based polices into relationship-based access control. The attribute-aware

ReBAC enhances access control capability and allows finer-grained controls that are not

available in ReBAC.

• Provide two effective path-checking algorithms for UURAC policy evaluation, along with

proofs of correctness and complexity analysis. An enhanced path-checking algorithm for

attribute-aware ReBAC is also presented to determine the existence of the required attributes

and relationships in order to grant access.

• Implement the proposed path-checking algorithms.

• Conduct experiments to evaluate the performance of the access control procedure.

1.6 Organization of the Dissertation

Chapter 2 gives a brief background on ReBAC in OSNs and reviews related work that focus on

access control and privacy preservation mechanisms for OSNs. Chapter 3 presents the model

definition and policy specifications of the proposed UURAC model. In Chapter 4, we introduce

two path-checking algorithms with proofs of correctness and complexity analysis, and evaluate
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the performance of the algorithms. Chapter 5 identifies the value of attribute-based policies for

ReBAC, and describes an attribute-aware ReBAC model that incorporates such attribute-based

policies. In Chapter 6, we propose the URRAC model that captures U2R and R2R relationships

for authorization. Chapter 7 summarizes the completed research and discusses future work.
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Chapter 2: BACKGROUND AND LITERATURE REVIEW

In this chapter, we provide a brief overview of necessary background on the security and privacy

issues found in OSNs, and examine existing access control and privacy preservation solutions for

OSNs.

2.1 Security and Privacy Issues in OSNs

Online social networks have emerged and thrived rapidly over the past several years now having

billions of users worldwide. OSNs have become the most popular portal for users to regularly

connect, interact and share information with each other for a multitude of purposes.

Although the nature and nomenclature found in OSNs may vary from one site to another,

OSNs basically allow individual users to construct a public or semi-public profile within a bounded

system, articulate a list of other users with whom they share a connection, and view and traverse

their list of connections and those made by others within the system [8].

The explosive growth of sensitive or private user data that are readily available in OSNs has

made security and privacy of information one of the most critical issues to be addressed. According

to the survey by Gao et al [26], security issues in OSNs can be at least generalized into four

categories: privacy breaches, spam and phishing attacks, sybil attacks and malware attacks.

Users share a vast amount of content with other users in OSNs using various services. Such an

abundance of information makes privacy breach very easy to happen from OSN providers, other

users, and third party applications. OSN systems keep all the information users have uploaded.

Thus users have to trust OSN providers to protect and not to misuse the data. However, OSNs

can benefit from analyzing and sharing user data and activity history for many purposes, such as

targeted advertising and service improvement.

Many OSNs also allow third party applications to run on their platforms and offer users ad-

ditional functionalities. Users grant permission to third party applications during installation, but

the control mechanism is simply all-or-nothing. Hence, those applications may often get access to
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more information than they actually need for proper functioning [22], or may be able to post on

user’s profile or access user’s data without user’s knowledge.

Another major kind of threats are from peer users in OSNs, since many OSN users are not

aware of who they share the data with and how much. Moreover, in a recent report [42], half of

OSN users say they have some difficulty in managing privacy controls offered by OSN sites. This

implies that a suitable and effective access control mechanism is needed for protecting user’s data

from unwanted access, which is the main focus of this research.

2.2 Characteristics of Access Control for OSNs

OSN is becoming the most prevalent manifestation of user-generated content platforms. Photos,

videos, blogs, web links and other kinds of information are posted, shared and commented by

OSN users. Various types of user interactions, including chatting, private messaging, poking, social

games, etc., are also embedded into these systems. Below, we discuss some essential characteristics

[45, 46] that need to be supported in access control solutions for OSN systems.

Policy Individualization. OSN users may want to express their own preferences on how their

own or related contents should be exposed. A system-wide access control policy such as we find

in mandatory and role-based access control, does not meet this need. Access control in OSNs

further differs from discretionary access control in that users other than the resource owner are

also allowed to configure the policies of the related resource. In addition, users who are related to

the accessing user (e.g. parent to child) may want to control the accessing user’s actions. Therefore,

the OSN system needs to collectively utilize these individualized policies from users related to the

accessing user or the target, along with the system-specified policies for control decisions.

User and Resource as a Target. Unlike traditional user access where the access is against

target resource, activities such as poking and friend recommendations are performed against other

users.

User Policies for Outgoing and Incoming Actions. Notification of a particular friends’ ac-

tivities could be bothersome and a user may want to block it. This type of policy is captured as
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incoming action policy. Also, a user may want to control her own or other users’ activities. For

example, a user may restrict her own access from all violent content or a parent may not want her

child to invite her co-worker as a friend. This type of policy is captured as an outgoing action

policy. In OSN, it is necessary to support policies for both types of actions.

Necessity for Relationship-based Access Control. Typically, the number of users in an OSN

is very large and the amount of resources they own is usually even larger. Moreover, the relation-

ships among users are changing frequently and dynamically. A user may not be able to know either

the user name space of the entire network or all her possible direct or indirect contacts. Therefore,

it is infeasible for her to specify access control policies for all of the possible accessing users. Even

if she knows them all, it takes enormous amount of time for her to explicitly specify policies for all

of them one by one as in discretionary access control. Role-based access control does not fit well

in this situation either, because privileged user groups are different for each user. Thus different

users’ privileged user groups cannot be assigned to a unified set of roles. Overall using traditional

access control approaches is cumbersome and inadequate for OSN systems.

Instead, access control in OSNs is mainly based on relationships among users and resources.

For example, only Alice’s direct friends can access her blogs, or only user who owns the photo

or tagged users can modify the caption of the photo. Depth is another significant parameter, since

people tend to share resources with closer users (e.g., “friend”, or “friend of friend”).

2.3 Relationships as Basis of Authorization

Typically, an OSN can be modeled as a graph, where nodes correspond to users and edges denote

relationships between users. Moreover, since in many OSNs there exist non-mutual relationships

of different types (e.g., follow, parent, etc.), it is more general to associate label and direction with

the edges on the graph. More precisely, OSN can be abstracted as a directed labeled simple graph,

an example of which is shown in Figure 3.3.

Social relationships connect different social entities (e.g., people, organizations, etc.) and form

the basis of the social network structure. The impact of the Internet on social relationships has been
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a major research topic in social science in the past decade. The majority of the research has been

conducted on how the Internet affects the formation and maintenance of new online relationships

with strangers, or on how the Internet helps to sustain existing offline relationships. In computer

science community, on the other hand, researchers have been aware of the significant role online

social relationships can play in protecting security and privacy of data in OSNs.

An OSN is basically a set of social entities connected by a set of relationships. Systems usually

provide users various services for both the maintenance of existing social ties and the formation

of new connections with other users. Based on such relationships, for example, users can identify

contacts of their contacts, or get notification about the updates from their contacts.

As an OSN is built upon social graph, a new paradigm of access control, called Relationship-

based Access Control (ReBAC), has been developed based on relationships between users on the

social graph. This type of access control takes into account the existence of a particular relationship

or a particular sequence of relationships between users and expresses access control policies in

terms of such user-to-user relationships.

2.4 Existing Models for Relationship-based Access Control

The large and complex collections of user data in OSNs require usable and fine-grained access

control solutions to protect them [27,33]. Gates [27] discusses the access control requirements for

OSN environments, where he argues that one of the key requirements is relationship-based access

control.

Fong et al [23] proposed a formal ReBAC model for social computing applications, which

employs a modal logic language for policy specification and composition. In [25], Fong et al later

extended the policy language and studied its expressive power. These two models allow multiple

relationship types and directional relationships. Authorization are based on U2U relationships

between the accessing user and the resource owner, and relationships are articulated in contexts.

Inspired by research in trust and reputation systems, some early solutions proposed by Kruk et

al [39] and Carminati et al [13,14] identified aggregated trust value, denoting the level of relation-
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ship, along with relationship type and depth on a path from the resource owner to the accessing user

as parameters for authorization. While Kruk’s work only considers one relationship type, Carmi-

nati’s work allows multiple relationship types but only supports trust computation of a relationship

path of a single type at a time. Carminati et al also proposed a semi-decentralized architecture,

where access rules are specified in terms of relationship type, depth and trust metrics by individ-

ual users in a discretionary way [15]. The system features a centralized certificate authority to

assert the validity of relationship paths, while access control enforcement is carried out on the

decentralized user side.

A formal model for access control in Facebook-like systems was developed by Fong et al [24],

which treats access control as a two-stage process, namely, reaching the search listing of the re-

source owner and accessing the resource, respectively. Reachability of the search listings is a

necessary condition for access. Although lacking support for directed relationships, multiple rela-

tionship types and trust metric of relationships, this model allows expression of arbitrary topology-

based properties, such as “k common friends” and “k clique”, which are beyond what Facebook

and other commercial OSNs offer.

In [11, 12], Carminati et al proposed an access control framework which utilizes relationships

among users and resources as the basis for access control and employs the Semantic Web Rule Lan-

guage (SWRL) to define authorization, administration and filtering policies. Our URRAC model

proposed in this work offers more complete policy administration by addressing policy manage-

ment and conflict resolution. Another semantic web-based approach proposed in [43] allows both

users and the system to express policies based on access control ontologies.

The first four columns of Table 2.1 summarize the salient characteristics of the models dis-

cussed above. The fifth column gives these characteristics for the UURAC model [17] and the

URRAC model [16].

All the models deal only with U2U relationships, except [11,12,16] also recognize U2R (user-

to-resource) relationships explicitly. U2R relationships can be captured implicitly via U2U with

the last hop being U2R.
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Table 2.1: Comparison of Access Control Models for OSNs
Fong [24] Fong [23, 25] Carminati [15] Carminati [11, 12] UURAC, URRAC &

UURACA

Relationship Category
Multiple Relationship Types � � � �
Directional Relationship � � �
U2U Relationship � � � � �
U2R Relationship � �(only URRAC)

Model Characteristics
Policy Individualization � � � � �
User & Resource as a Target (partial) �
Outgoing/Incoming Action Policy (partial) �

Relationship Composition
Relationship Depth 0 to 2 0 to n 1 to n 1 to n 0 to n

Relationship Composition f, f of f exact type se-

quence

path of same

type

exact type se-

quence

path pattern of different

types

Attribute-aware Access Control
Common-friendsk � �(only UURACA)

User Attributes (partial) �(only UURACA)

Relationship Attributes (partial) �(only UURACA)

Having seen the various notations used for expressing policies in the above works, Aktoudi-

anakis et al [1] later on demonstrated that their proposed policy templates using set theoretic nota-

tion can provide a general framework for defining relationship-based access control policies.

2.5 Other OSN Privacy Preservation Solutions

NOYB [31] and Facecloak [41] provided extra access control mechanism to users’ real data in

addition to the existing access control provided by the OSN sites, since they don’t trust OSN sites

at all. User specifies who will be granted permissions, and disseminates the rights out-of-band.

Any other users without the rights as well as the OSN sites can only see the fake data. The slight

difference between the two approaches is the former one only addresses the privacy of profile

information.

Lucas et al [40] proposed a Facebook application, flyByNight, that offers cryptographic pro-

tection on messages exchanged between Facebook users. It supports one-to-one and one-to-many

communication. Because of the nature of a Facebook application, its fate is entirely at the discre-

tion of Facebook.

Privacy-by-proxy [22] is a privacy preserving API that deals with the privacy risks between

users and the third party applications. It replaces the real user data with tags before sending to the
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applications. The real data behind the tag is only visible to users who could see this data anyhow

at the owner’s page. It also assumes the trustworthiness of OSN sites. Because the API can handle

the output transformation itself, no major changes need to be applied to either the OSN architecture

or the applications.
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Chapter 3: THE UURAC MODEL

In this chapter, we develop a novel user-to-user relationship based access control (UURAC) model

for OSN systems that utilizes regular expression notations for such policy specification.

3.1 The UURAC Model Foundation

In this section, we describe the foundation of UURAC including basic notations, access control

model components and social graph model.

3.1.1 Basic Notations

We write Σ to denote the set of relationship type specifiers, where Σ = {σ1, σ2, . . ., σn, σ−1
1 , σ−1

2 ,

. . . , σ−1
n }. Each relationship type specifier σ is represented by a character recognizable by the

regular expression parser. Given a relationship type σi ∈ Σ, the inverse of the relationship is σ−1
i

∈ Σ.

We differentiate the active and passive forms of an action, denoted action and action−1, re-

spectively. If Alice pokes Bob, the action is poke from Alice’s viewpoint, whereas it is poke−1

from Bob’s viewpoint.

3.1.2 Access Control Model Components

The model comprises five categories of components as shown in Figure 3.1.

Accessing User (ua) represents a human being who performs activities. An accessing user

carries access control policies and U2U relationships with other users.

Each Action is an abstract function initiated by accessing user against target. Given an action,

we say it is action for the accessing user, but action−1 for the recipient user or resource.

Target is the recipient of an action. It can be either target user (ut) or target resource (rt).

Target user has her own policies and U2U relationship information, both of which are used for

authorization decisions. Target resource has U2R relationship (i.e., ownership) with controlling
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Figure 3.1: The UURAC Model Components

users (uc). An accessing user must have the required U2U relationships with the controlling user

in order to access the target resource.

Access Request denotes an accessing user’s request of a certain type of action against a target.

It is modeled as a tuple 〈ua, action, target〉, where ua ∈ U is the accessing user, target is the user

or resource that ua tries to access, whereas action ∈ Act specifies from a finite set of supported

functions in the system the type of access the user wants to have with target. If ua requests to

interact with another user, target = ut, where ut ∈ U is the target user. If ua tries to access a

resource owned by another user uc, target is resource rt ∈ R where R is a finite set of resources

in OSN.

Figure 3.2: Access Control Policy Taxonomy

Policy defines the rules according to which authorization is regulated. As shown in Figure 3.2,

policies can be categorized into user-specified and system-specified policies, with respect to who

defines the policies. System-specified policies (SP ) are system-wide general rules enforced by the

20



OSN system; while user-specified policies are applied to specific users and resources. Both user-

and system-specified policies include policies for resources and policies for users. Policies for

resources are used to control who can access a resource, while policies for users regulate how users

can behave regarding an action. User-specified policies for a resource are called target resource

policies (TRP ), which are policies for incoming actions. User-specified policies for users can

be further divided into accessing user policies (AUP ) and target user policies (TUP ), which

correspond to user’s outgoing and incoming access (see examples in Section 2.2), respectively.

Accessing user policies, also called outgoing action policies, are associated with the accessing

user and regulate this user’s outbound access. Target user policies, also called incoming action

policies, control how other users can access the target user. Note that system-specified policies

do not have separate policies for incoming and outgoing actions, since the accessor and target are

explicitly identified.

3.1.3 Modeling Social Graph

As shown in Figure 3.3, an OSN forms a directed labeled simple graph1 with nodes (or vertices)

representing users and edges representing user-to-user relationships. We assume every user owns

a finite set of resources and specifies access control policies for the resources and activities related

to her. If an accessing user has the U2U relationship required in the policy, the accessing user will

be granted permission to perform the requested action against the corresponding resource or user.

We model the social graph of an OSN as a triple G = 〈U,E,Σ〉:

• U is a finite set of registered users in the system, represented as nodes (or vertices) on the

graph. We use the terms user and node interchangeably from now on.

• Σ = {σ1, σ2, . . . , σn σ
−1
1 , σ−1

2 , . . . , σ−1
n } denotes a finite set of relationship types, where each

type specifier σ denotes a relationship type supported in the system.

• E ⊆ U × U × Σ, denoting social graph edges, is a set of existing user relationships.

1A simple graph has no loops (i.e., edges which start and end on the same vertex) and no more than one edge of a

given type between any two different vertices.
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Figure 3.3: A UURAC Sample Social Graph

Since not all the U2U relationships in OSNs are mutual, we define the relationships E in the

system as directed. For every σi ∈ Σ, there is σ−1
i ∈ Σ representing the inverse of relationship type

σi. We do not explicitly show the inverse relationships on the social graph, but assume the original

relationship and its inverse twin always exist simultaneously. Given a user u ∈ U , a user v ∈ U

and a relationship type σ ∈ Σ, a relationship (u, v, σ) expresses that there exists a relationship

of type σ starting from user u and terminating at v. It always has an equivalent form (v, u, σ−1).

G = 〈U,E,Σ〉 is required to be a simple graph.

3.2 The UURAC Policy Specifications

This section defines a regular-expression based policy specification language, to represent various

patterns of multiple relationship types.

3.2.1 Path Expression Based Policy

The user relationship path in access control policies is represented by regular expressions. The for-

mulas are based on the set Σ of relationship type specifiers. Each specification in this language de-

scribes a pattern of required relationship types between the accessing user and the target/controlling

user. We use three kinds of quantification notations that represent different occurrences of relation-

ship types: asterisk (*) for 0 or more, plus (+) for 1 or more and question mark (?) for 0 or 1. The

asterisk is commonly known as the Kleene star.
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3.2.2 Graph Rule Specification and Grammar

An access control policy consists of a requested action, optional target resource and a required

graph rule. In particular, graph rule is defined as (start, path rule), where start denotes the

starting node of relationship path evaluation, whereas path rule denotes a collection of path specs.

Each path spec consists of a pair (path, hopcount), where path is a sequence of characters, denot-

ing the pattern of relationship path between two users that must be satisfied, while hopcount limits

the maximum number of edges on the path.

Typically, a user can specify one piece of policy for each action regarding a user or a resource

in the system, and the path rule in the policy is composed of one or more path specs. Policies

defined by different users for the same action against same target are considered as separate poli-

cies. Multiple path specs can be connected by disjunction or conjunction. For instance, a path

rule (f∗, 3) ∨ (Σ∗, 5) ∨ (fc, 2), where f is friend and c is co-worker, contains disjunction of three

different pieces of path specs, of which one must be satisfied in order to grant access. Note that,

there might be a case where only users who do not have particular types of relationships with the

target are allowed to access. To allow such negative relationship-based access control, a boolean

negation operator over path specs is allowed, which implies the non-existence of the specified pair

of relationship type pattern path and hopcount limit hopcount following ¬. For example, ¬ (fc+,

5) means the involved users should not have relationship of pattern fc+ within depth of 5 in order

to get access.

Each graph rule usually specifies a starting node, the required types of relationships between the

starting node and the evaluating node, and the hopcount limit of such relationship path. A grammar

describing the syntax of this policy language is defined in Table 3.1. Here, GraphRule stands for

the graph rule to be evaluated. StartingNode can be either the accessing user ua, the target user

ut or the controlling user uc, denoting the given node from which the required relationship path

begins. Path represents a sequence of type specifiers from the starting node to the evaluating

node. Path will typically be non-empty. If path is empty and hopcount = 0 we assign the special
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Table 3.1: UURAC Grammar for Graph Rules

GraphRule ::= “(”〈StartingNode〉“, ”〈PathRule〉“)”
PathRule ::= 〈PathSpecExp〉|〈PathSpecExp〉〈Connective〉〈PathRule〉
Connective ::= ∨|∧
PathSpecExp ::= 〈PathSpec〉|¬〈PathSpec〉
PathSpec ::= “(”〈Path〉“, ”〈HopCount〉“)”|“(”〈EmptySet〉“, ”〈Hopcount〉“)”
HopCount ::= 〈Number〉
Path ::= 〈TypeExp〉|〈TypeExp〉〈Path〉
EmptySet ::= ∅
TypeExp ::= 〈TypeSpecifier〉|〈TypeSpecifier〉〈Quantifier〉
StartingNode ::= ua|ut|uc
TypeSpecifier ::= σ1|σ2|..|σn|σ−1

1 |σ−1
2 |..|σ−1

n |Σ where Σ = {σ1, σ2, .., σn, σ−1
1 , σ−1

2 , .., σ−1
n }

Quantifier ::= “ ∗ ”|“?”|“ + ”
Number ::= [0− 9]+

Table 3.2: UURAC Access Control Policy Representations

Accessing User Policy 〈action, (start, path rule)〉
Target User Policy 〈action−1, (start, path rule)〉
Target Resource Policy 〈action−1, uc, (start, path rule)〉
System Policy for User 〈action, (start, path rule)〉
System Policy for Resource 〈action, (r.typename, r.typevalue), (start, path rule)〉

meaning of “only me”, which is the only allowed case for empty path. Quantifier captures the

three quantification characters, which facilitate specifying path expressions more efficiently and

effectively. Given a graph rule from the access control policy, this grammar specifies how to parse

the expression and to extract the containing path pattern and hopcount from the expression.

3.2.3 User- and System-specified Policy Specifications

User-specified policies specify how individual users want their resources or services related to

them to be released to other users in the system. These policies are specific to actions against a

particular resource or user. System-specified policies allow the system to specify access control on

users and resources. Different from user policies, the statements in system policies are not specific

to particular accessing user or target, but rather focus on the entire set of users or resource types

(see Table 3.2).

In accessing user policy, action denotes the requested action, whereas (start, path rule) ex-
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presses the graph rule. Similarly, action−1 in target user policy and target resource policy is the

passive form of the corresponding action applied to target user. Target resource policy contains an

extra parameter uc, representing the controlling user of the resource.

This model considers only U2U relationships in policy specification. In general, there could

be one or more controlling users who have certain types of U2R relationships with the resource

and specify policies for the corresponding target resource. To access the resource, the accessing

user must have the required relationships with the controlling users. The policies associated with

the target resources are defined on the basis of per action per controlling user. For instance, when

querying read access request on rt, all of rt’s target resource policies need to be considered in

evaluation. Each policy specifies a controlling user, with whom the accessing user must have the

required relationship. Note that in this chapter we are not introducing the policy administration

model, so who can specify the policy is not discussed.

System-specified policies do not differentiate the active and passive forms of an action. System

policy for users has the same format as accessing user policy. However, when specifying system

policy for resources, one system-wide policy for one type of access to all resources may not be

fine-grained and flexible enough. Sometimes we need to refine the scope of the resources that

applied to the policies in terms of resource types (r.typename, r.typevalue).2 Examples of types

are (filetype, photo), (filetype, statusupdate), (location, Texas), etc. Thus, 〈read, (filetype,

photo), (uc, f∗, 4)〉 is a system policy applied to all read access to photos in the system. When

dealing with system policy for resources, we can determine the controlling user of the resource

through some U2R relationships, such as ownership (as shown in Figure 3.1).

2There could be combinations of multiple resource types in one policy, but for illustration, we only show one

resource type per policy.
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3.2.4 Access Evaluation Procedure

Algorithm 3.1 AccessEvaluation(ua, action, target)
1: (Policy Collecting Phase)

2: if target = ut then
3: AUP ← ua’s policy for action, TUP ← ut’s policy for action−1, SP ← system’s policy for

action
4: else
5: AUP ← ua’s policy for action, TRP ← rt’s policy for action−1, SP ← system’s policy for

action, (r.typename, r.typevalue)
6: (Policy Evaluation Phase)

7: for all policy in AUP , TUP /TRP and SP do
8: Extract graph rules (start, path rule) from policy

9: for all graph rule extracted do
10: Determine the starting node, specified by start, where the path evaluation starts

11: Determine the evaluating node which is the other user involved in access

12: Extract path rules path rule from graph rule

13: Extract each path spec path, hopcount from path rule

14: Path-check each path spec using Algorithm 4.1 or 4.3

15: Evaluate the combined result based on conjunctive or disjunctive connectives between path specs

and negation on individual path specs

16: Compose the final result from the result of each policy

Algorithm 3.1 specifies how the access evaluation procedure works. When an accessing user

ua requests an action against a target user ut, the system will look up ua’s action policy, ut’s

action−1 policy and the system-specified policy corresponding to action. When ua requests an

action against a resource rt, the system will retrieve all the corresponding policies of rt. Although

each user can only specify one policy per action per target, there might be multiple users specifying

policies for the same pair of action and target. Multiple policies might be collected in each of the

three policy sets: AUP , TUP /TRP and SP .

Example Given the following policies and social graph in Figure 3.3:

• Alice’s policy PAlice: 〈poke, (ua, (f∗, 3))〉 〈poke−1, (ut, (f , 1))〉 〈read, (ua, (Σ∗, 5))〉

• Harry’s policy PHarry: 〈poke, (ua, (cf∗, 5) ∨ (f∗, 5))〉 〈poke−1, (ut, (f∗, 2))〉
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• Policy of file2 Pfile2: 〈read−1, Harry, (uc, ¬(p+, 2))〉

• System’s policy PSys: 〈poke, (ua, (Σ∗, 5))〉 〈read, (filetype, photo), (ua, (Σ∗, 5))〉

When Alice requests to poke Harry, the system will look up the following policies: 〈poke, (ua,

(f∗, 3))〉 from PAlice, 〈poke−1, (ut, (f∗, 2))〉 from PHarry, and 〈poke, (ua, (Σ∗, 5))〉 from PSys.

When Alice requests to read photo file2 owned by Harry, the policies 〈read, (ua, (Σ∗, 5))〉 from

PAlice, 〈read−1, Harry, (uc, ¬(p+, 2))〉 from Pfile2, and 〈read, photo, (ua, (Σ∗, 5))〉 from PSys

will be used for authorization.

For all the policies in the policy sets, the algorithm first extracts the graph rule (start, path

rule) from each policy. Once the graph rule is extracted, the system can determine where the path

checking evaluation starts (using start), and then extracts every path spec path, hopcount (from

path rule). Then, it runs a path-checking algorithm (see the next chapter) for each path spec. The

path-checking algorithm returns a boolean result for each path spec. To get the evaluation result

of a particular policy, we combine the results of all path specs in the policy using conjunction,

disjunction and negation. At last, the final evaluation result for the access request is made by

composing all the evaluation results of the policies in the chosen policy sets.

3.2.5 Discussion

The existence of multi-user policies can result in decision conflicts. To resolve this, we can adopt

a disjunctive, conjunctive, or prioritized approach. When a disjunctive approach is enabled, the

satisfaction of any corresponding policy is sufficient for granting the requested access. In a con-

junctive approach, the requirements of every involved policy should be satisfied in order that the

access request would be granted. In a prioritized approach, if, for example, parents’ policies get

priority over children’s policies, the parents’ policies overrule children’s policies. While policy

conflicts are inevitable in the proposed model, we do not discuss this issue in further detail here.
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For simplicity we assume system level policies are available to resolve conflicts in user-specified

authorization policies and do not consider user-specified conflict resolution policies.

One observation from user-specified policies is that action policy starts from ua whereas

action−1 policy starts from ut. This is because action is done by ua while action−1 is from

ut’s perspective. When hopcount = 0 and path equals to empty, it has special meaning of “only

me”. For instance, 〈poke, (ua, (∅, 0))〉 says that ua can only poke herself, and 〈poke−1, (ut, (∅,

0))〉 specifies ut can only be poked by herself. The above two policies give a complementary ex-

pressive power that the regular policies do not cover, since regular policies are simply based on

existing paths and limited hopcount.

As mentioned earlier, the social graph is modeled as a simple graph. Further we only allow

simple path with no repeating nodes. Avoiding repeating nodes on the relationship path prevents

unnecessary iterations among nodes that have been visited already and unnecessary hops on these

repeating segments. On the other hand, this “no-repeating" could be quite useful when a user

wants to expose her resource to farther users without granting access to nearer users. For example,

in a professional OSN system such as LinkedIn, a user may want to promote her resume to users

outside her current company, but does not want her co-workers to know about it. Note that the two

distinct paths denoted by fffc and fc may co-exist between a pair of users. Simply specifying

fffc in the policy does not avoid someone who also has fc relationship with the owner from

accessing the resume. In contrast, fffc ∧ ¬(fc) allows the co-workers of the user’s distant friends

to see the resume, while the co-workers of the user’s direct friends fc are not authorized.

In general, conventional OSNs are susceptible to the multiple-persona problem, where users

can always create a second persona to get default permissions. Our approach follows the default-

denial design, which means if there is no explicit positive authorization policy specified, there

is no access permitted at all. Based on the default-denial assumption, negative authorizations in

our policy specifications are mainly used to further refine permissions allowed by the positive

authorizations specified (e.g., f ∗ c∧¬(fc)). A single negative authorization without any positive

authorization has the same effect as there is no policy specified at all, but it is still useful to restrict
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future addition of positive policies. Nonetheless it is possible for the co-worker of a direct friend to

have a second persona that meets the criteria for co-worker of a distant friend and thereby acquires

access to the resume. Without strong identities we can only provide persona level control in such

policies.
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Chapter 4: PATH-CHECKING ALGORITHMS AND EVALUATION

In this chapter, we first introduce the path-checking algorithms for UURAC based on two differ-

ent traversal strategies. We then describe some experiments to evaluate the performance of the

algorithms, and analyze the results of our experiments.

4.1 Algorithms

In this section, we present two algorithms for determining if there exists a qualified path between

two involved users in an access request, based on depth-first search (DFS) and breadth-first search

(BFS) strategies. Then, we provide proofs of correctness and complexity analysis for both algo-

rithms.

As mentioned, in order to grant access, relationships between the accessing user and the tar-

get/controlling user must satisfy the graph rules specified in access control policies regarding the

given request. We formulate the problem as follows: given a social graph G, an access request 〈ua,

action, target〉 and an access policy, the system decision module explores the graph and verifies

the existence of a path between ua and target (or uc of target) matching the graph rule 〈start,
path rule〉.

As shown in Algorithm 4.1 and 4.3, the path checking algorithm takes as input the social graph

G, the path pattern path and the hopcount limit hopcount specified by path spec in the policy,

the starting node s specified by start and the evaluating node t which is the other user involved,

and returns a boolean value as output. Note that path is non-empty, so this algorithm only copes

with cases where hopcount �= 0. The starting node s and the evaluating node t can be either

the accessing user or the target/controlling user, depending on the given policy. The algorithm

starts by constructing a DFA (deterministic finite automata) from the regular expression path.

The REtoDFA() function receives path as input, and converts it to an NFA (non-deterministic

finite automata) then to a DFA, by using the well-known Thompson’s Algorithm [52] and Subset

Construction Algorithm (also known as Büchi’s Algorithm) [47], respectively.
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4.1.1 Depth-first Search

Using DFS to traverse the graph requires only one running DFA and, correspondingly, one pair of

variables keeping the current status and the history of exploration in a DFS traversal. Whereas,

a BFS traversal has to maintain multiple DFAs and multiple variables simultaneously and switch

between these DFAs back and forth constantly, which makes the costs of memory space and I/O

operations proportional to the number of nodes visited during exploration. Note that DFS could

take a long traversal to find a target node, even if the node is close to the starting node. If the

hopcount is unlimited, a DFS traversal may pursue a lengthy useless exploration. However, as ac-

tivities in OSNs typically occur among people with close relationships, DFS with limited hopcount

can minimize such unnecessary traversals.

In Algorithm 4.1, the variable currentPath, initialized as NIL, holds the sequence of the

traversed edges between the starting node and the current node. Variable stateHistory, initialized

as the initial DFA state, keeps the history of DFA states during algorithm execution. The main

procedure starts by setting the current traversal depth d to 0 and launches the DFS traversal function

DFST () in Algorithm 4.2 from the starting node s.

In Algorithm 4.2, given a node u, if d + 1 does not exceed the hopcount limit, it indicates that

traversing one step further from u is allowed. Otherwise, the algorithm returns false (line 2) and

goes back to the previous node (line 26). If further traversal is allowed, then the algorithm picks

up an edge (u, v, σ) from the list of the incident edges leaving u. If (u, v, σ) is unvisited, we get

the node v on the opposite side of the edge (u, v, σ). Now we have six different cases. If v is on

currentPath, we will never visit v again, because doing so creates a cycle on the path. Rather,

the algorithm breaks out of the current for loop, and finds the next unchecked edges of u.

When v is not on currentPath and v is the target node t, we check if the transition σ belongs

to the set of valid transitions for DFA. If the transition is valid and if DFA taking the transition σ

reaches an accepting state, we find a path between s and t matching the pattern Path (case 2). We

increment d by one, concatenate edge (u, v, σ) to currentPath, and save the current DFA state to
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history. If DFA with transition σ is not at an accepting state, then the path from s to v does not

match the pattern (case 3). If the transition is invalid for DFA, we try the next edge (case 4). When

v is not on currentPath and is not the target node, there are two cases depending on whether

the transition type σ is a valid transition for DFA. If it is not, we break out of the for loop and

continue to check the next unchecked edge of u (case 5). Otherwise, the algorithm increments d by

one, concatenates e to currentPath, moves DFA to the next state via transition type σ, updates the

DFA state history, and repeatedly executes DFST () from node v (case 6). If the recursive function

call discovers a matching path, the previous call also returns true. Otherwise, the algorithm has to

step back to the previous node of u, reset all variables to the previous values, and check the next

edge of node u. However, if d = 0, all the outgoing edges of the starting node are checked, thus the

whole execution completes without a matching path.

4.1.2 Breadth-first Search

Starting from an initial node, a BFS traversal aims to expand and examine all nodes of a graph

from inside out until it finds the goal. A FIFO (first in, first out) queue is created with the starting

node as the first element. All the nodes of a level need to be added to the queue, and will be

dequeued before the nodes of their child level. Similar to the DFS traversal, we need to create a

running DFA and set up the corresponding variables for the search. However, to find a matching

path, a BFS traversal has to maintain the DFA state and other variables for every possible path it

examines, resulting in a multiple number of DFAs and variables simultaneously. Although BFS

may naturally consume more computational resources, it has advantage over its DFS counterpart

as it never wastes time on a lengthy unsuccessful exploration.

As shown in Algorithm 4.3, we create a DFA from the regular expression pattern, enqueue the

starting node s, and initialize the variable currentPath, stateHistory and d of s to NIL, the

initial DFA state and 0, respectively. The algorithm continues when the queue is not empty, and

dequeues the first node of the queue for further exploration. Given a node q, if d + 1 does not

exceed the hopcount limit, the algorithm moves on to examine the incident outgoing edges of q.
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Algorithm 4.1 DFSPathChecker(G, path, hopcount, s, t)

1: DFA ← REtoDFA(path); currentPath ← NIL; d ← 0
2: stateHistory ← DFA starts at the initial state

3: if hopcount �= 0 then
4: return DFST(s)

Algorithm 4.2 DFST (u)
1: if d+ 1 > hopcount then
2: return FALSE

3: else
4: for all (v, σ) where (u, v, σ) in G do
5: switch
6: case 1 v ∈ currentPath
7: break

8: case 2 v /∈ currentPath and v = t and DFA with transition σ is at accepting state

9: d ← d+ 1; currentPath ← currentPath.(u, v, σ)
10: currentState ← DFA takes transition σ
11: stateHistory ← stateHistory.(currentState)
12: return TRUE

13: case 3 v /∈ currentPath and v = t and transition σ is valid for DFA but DFA with transition σ is

not at accepting state

14: break

15: case 4 v /∈ currentPath and v = t and transition σ is invalid for DFA

16: break

17: case 5 v /∈ currentPath and v �= t and transition σ is invalid for DFA

18: break

19: case 6 v /∈ currentPath and v �= t and transition σ is valid for DFA

20: d ← d+ 1; currentPath ← currentPath.(u, v, σ)
21: currentState ← DFA takes transition σ
22: stateHistory ← stateHistory.(currentState)
23: if (DFST(v)) then
24: return TRUE

25: else
26: d ← d− 1; currentPath ← currentPath\(u, v, σ)
27: previousState ← last element in stateHistory
28: DFA backs off the last taken transition σ to previousState
29: stateHistory ← stateHistory\(previousState)
30: return FALSE
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All edges can be classified into the same six cases as in the above mentioned DFS algorithm. For

an edge (u, v, σ), only when v is not on currentPath and v is the target node t and DFA taking a

valid transition σ reaches an accepting state, we find a path between q and t matching the pattern

Path (case 2). We then update the corresponding variables for node v and exit the algorithm with

true. If v is not on currentPath and is not the target node, we check the validity of the transition

σ. If the transition is valid, we will take the transition, update the variables of v, and enqueue node

v into the queue for later examination (case 6). In all other cases, a successful exploration will not

possibly occur, thus the edges are dropped. After checking all edges within the hopcount limit, the

algorithm terminates with false if no matching path is found.

4.1.3 Proof of Correctness

Theorem 1. Algorithm 4.2 and 4.3 will halt with true or false.

Proof. Base case (Hopcount = 1): d is initially set to 0. Each outgoing edge from the starting

node s will be examined once and only once. If taking an edge reaches the target node t and its

type matches the language Path denotes (case 2), both algorithms return true. In Algorithm 4.2, if

the edge type matches the prefix of an expression in L(Path) (case 6), d increments to 1 followed

by a recursive call to DFST (). The second level call will return false, since incremented d has

exceeded Hopcount. In all other cases, the examined edge is discarded and d remains the same.

In Algorithm 4.3, if the edge type matches the prefix of an expression in L(Path) (case 6), the

new node v is added to the queue with an incremented d. When v is dequeued later, the new edge

will be dropped as the updated d has exceeded Hopcount. In all other cases, the examined edge

is discarded and d remains the same. Eventually, if a matching edge is not found, both algorithms

will go through every outgoing edge from s and exit with false thereafter.

Induction step: Assume when Hopcount = k (k ≥ 1), Theorem 1 is true.

In Algorithm 4.2, when Hopcount is set to k + 1, all the (k + 1)th level recursive calls will

examine every outgoing edge from the (k+1)th node on currentPath. If visiting an edge reaches

t and the updated currentPath matches L(Path), the (k + 1)th level call returns true and exits
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Algorithm 4.3 BFSPathChecker(G, path, hopcount, s, t)

1: DFA ← REtoDFA(path)
2: if hopcount �= 0 then
3: create queue Q
4: create node s: s.DFA ← DFA; s.currentPath ← NIL; s.d ← 0; s.stateHistory ← DFA starts

at the initial state

5: enqueue s onto Q
6: while Q is not empty do
7: dequeue a node from Q into q
8: if q.d+ 1 > hopcount then
9: break

10: else
11: for all (v, σ) where (q, v, σ) in G do
12: switch
13: case 1 v ∈ currentPath
14: break

15: case 2 v /∈ currentPath and v = t and DFA with transition σ is at accepting state

16: create node v (clone from q)

17: v.previousState ← v.currentState
18: v.currentState ← DFA takes transition σ
19: v.d++
20: v.currentPath adds (q, v, σ)
21: v.stateHistory adds currentState
22: return TRUE

23: case 3 v /∈ currentPath and v = t and transition σ is valid for DFA but DFA with transition

σ is not at accepting state

24: break

25: case 4 v /∈ currentPath and v = t and transition σ is invalid for DFA

26: break

27: case 5 v /∈ currentPath and v �= t and transition σ is invalid for DFA

28: break

29: case 6 v /∈ currentPath and v �= t and transition σ is valid for DFA

30: create node v (clone from q)

31: enqueue v onto Q
32: v.previousState ← v.currentState
33: v.currentState ← DFA takes transition σ
34: v.d++
35: v.currentPath adds (q, v, σ)
36: v.stateHistory adds currentState
37: return FALSE
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to the previous level, making all of the previous level calls all the way back to the first level exit

with true as well. If an edge falls into case 6, d is incremented to k + 2 and a (k + 2)th level

recursive call invokes, which will halt with false and return to the (k+1)th level as d has exceeded

Hopcount. After all edges are examined without returning true, the algorithm will exit with false

to the previous level. In the kth level, when Hopcount = k + 1, edges without taking a recursive

call are treated the same as they are when Hopcount = k. Since when Hopcount = k the theorem

holds, the algorithm will terminate with true or false when Hopcount = k + 1 as well.

In Algorithm 4.3, when Hopcount increases to k+1, all of the edges leaving kth level nodes are

examined in the same way as before. If there exists a qualifying path between s and (k+1)th level

nodes, the algorithm returns true; otherwise, it enqueues (k+1)th level nodes whose currentPath

matches the prefix of pattern, and continues to examine edges leaving the next dequeued node, as

right now the incremented d does not exceed Hopcount any more. If visiting one of the edges from

(k + 1)th nodes reaches t and the updated currentPath matches L(Path), the algorithm returns

true. If currentPath matches only the prefix of L(Path), the corresponding (k + 2)th node will

be added to the queue. However, when the new node is dequeued later, the algorithm will halt with

false, since d exceeds Hopcount. The algorithm eventually exits false as all other edges leaving

(k + 1)th level nodes are dropped during path checking. Therefore, the algorithm will terminate

with true or false when Hopcount = k + 1 as well.

Lemma 1. At the start and end of each call in Algorithm 4.2 and during the execution of Algorithm

4.3, the DFA corresponding to Path is at currentState reachable from the starting state π0 by

transitions corresponding to the sequence of symbols in currentPath.

Proof. The proof is straightforward. New edge is added to currentPath only when it reaches the

target node (case 2) or it may possibly lead to the target node by examining the child of the current

node (case 6). In both cases the DFA starting from π0 will move to currentState by taking the

transition regarding the edge. Removing the last edge on currentPath after all edges leaving the

current node are checked always accompanies one step back-off of the DFA to its previous state

in Algorithm 4.2 (lines 26-29), which can eventually take the DFA all the way back to the starting
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state π0.

Theorem 2. If Algorithm 4.2 or 4.3 returns true, currentPath gives a simple path of length less

than or equal to Hopcount and the string described by currentPath belongs to the language

described by L(Path). If Algorithm 4.2 or 4.3 returns false, there is no simple path p of length

less than or equal to Hopcount such that the string representing p belongs to L(Path).

Proof. Base case (Hopcount = 1): At first, d = 0, currentPath = NIL, and the DFA is at the start-

ing state π0. When d = 0, case 1 requires that the edge being checked is a self loop which is not al-

lowed in a simple graph. Both algorithms only return true in case 2, where edge (s, t, σ) to be added

to currentPath finds the target node t in one hop. The transition σ moves the DFA to an accepting

state. Case 6 cannot return true, because incrementing d by one will exceed Hopcount when the

new node is being examined. When algorithms exit with true, due to Lemma 1, currentPath,

which is (s, t, σ), can move the DFA from π0 to an accepting state π1, implying that σ ∈ L(Path).

If the algorithms return false, they have searched all the edges leaving node s. However, these

examined edges either do not match the pattern specified by L(Path) (case 3, 4 and 5), or may

possibly match L(Path) but require more than one hop (case 6). Hence, Theorem 2 is true when

Hopcount = 1.

Induction step: Assume when Hopcount = k (k ≥ 1), Theorem 2 is true. For the same G,

Path, s and t, executions of DFST () when Hopcount = k and k + 1 only differ after invoking

the recursive DFST () call in case 6 of Algorithm 4.2 or new nodes are added to the queue in case

6 of Algorithm 4.3. If an edge being checked can make the algorithm return true when Hopcount

= k, currentPath is a string of length ≤ k which is in L(Path). When Hopcount is k + 1,

the same currentPath gives the same string and is of length < k + 1, thus making the function

exit with true as well. The only difference between Hopcount = k and Hopcount = k + 1 is that

adding edges that lie in case 6 to currentPath and incrementing d by one may not exceed the

larger Hopcount during the examination of the new node. If taking one of these edges leads to the

target node and its corresponding transition moves the DFA to an accepting state, the algorithm

will return true. The new currentPath gives a simple path of length k + 1 that connects node s
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and t. The algorithm only returns true in these two scenarios. In both scenarios, based on Lemma

1, the DFA can reach an accepting state by taking the transitions corresponding to currentPath,

so the string corresponding to currentPath is in L(Path). If the algorithm returns false when

Hopcount = k, there is no simple path p of length ≤ k, where the string of symbols in p is in

L(Path). When Hopcount is k + 1, given the same G, such a path still does not exist. By taking

a recursive DFST () call in case 6 of Algorithm 4.2 or adding a new node to the queue in case 6

of Algorithm 4.3, both algorithms will go through all 6 cases again to check all the edges leaving

the new node. If they return false, it means there is no simple path of length k + 1 with its string

of symbols in L(Path). Combining the results from all k + 1 level recursive calls, there exists no

simple path of length ≤ k + 1 with its string of symbols in L(Path). Hence, Theorem 2 is true

when Hopcount = k + 1.

4.1.4 Complexity Analysis

In this algorithm, every possible path from s to t will be visited at most once until it fails to reach

t, while every outgoing edge of a visited node may be checked multiple times during the search. In

the extreme case, where every relationship type is acceptable and the graph is a complete directed

graph, the overall complexity would be O(|V |Hopcount). However, users in OSNs usually connect

with a small group of users directly, thus the social graph is actually very sparse. We define the

maximum and minimum out-degree of node on the graph as dmax and dmin, respectively. Then,

the time complexity can be bounded between O(dminHopcount) and O(dmaxHopcount). Given the

constraints on the relationship types and hopcount limit in the policies, the size of graph to be ex-

plored can be dramatically reduced. The BFS algorithm and the recursive DFST () call terminate

as soon as either a matching path is found or the hopcount limit is reached.

4.2 Implementation and Evaluation

In this section, we present some of the results obtained from our performance studies on the two

path-checking algorithms. We implemented the algorithms in Java, and designed two sets of ex-
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periments to test the runtime execution of an access request evaluation using both algorithms. We

deployed an access control decider with BFS and DFS path checkers on a virtual machine instance

of an Ubuntu 12.04 image with 4GB memory and a 2.53 GHz quad-core CPU. The social graphs

to be tested are stored in MySQL databases on the testing machine along with the sample access

control policies. We designed the sample policies and sample access requests that would require

the access control decider to gather necessary information and crawl on the graph for the access

decisions. We then measured the time the algorithms take to complete a path checking over the

graph and return a result to the decider.

4.2.1 Datasets

When designing the experiments, we take into account two parameters of the graphs: hopcount

(depth) and degree (width). Although the total number of nodes in the system may influence

the performance and scalability of many graph systems, in our system the algorithms are not to

explore the whole graph but the paths with limited hops stemming from one node. Therefore, the

total number of nodes is not significant with respect to the performance. In fact, it is the hopcount

limit and the number of edges to be explored at each hop that contribute most to the size of the

problem, and hence the performance of our system.

A significant issue in this evaluation consists in the selection of representative datasets. There

are some public available datasets collected from real-world OSN systems with large amount of

real data. However, most of them only consider single relationship type or do not support rela-

tionship type at all. In a related analysis [10], the authors modified the original datasets to add

type information, where relationship types are uniformly distributed. However, manually adding

type information to the real datasets may not reflect the actual user behaviors, and thus ruins the

integrity of the datasets and diminishes the value of having real data. Moreover, different real

datasets possess various properties, making them incomparable with each other. Hence, synthetic

data becomes an alternative for us, where we can configure different social graphs under our con-

trol, and analyze some specific properties of these graphs.
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In the first set of experiments, we examine the performance of the BFS and DFS algorithms

with respect to policies with different hopcount limit. In particular, we set the parameters to 1000

users and single relationship type for this set of experiments. Each user has the same number

of neighbors, who are randomly selected among the rest 999 users. Two different kinds of path

patterns, including enumeration and *-pattern, are used in the policies to investigate the impact of

hopcount limit on the performance of the algorithms.

In the second set of experiments, we aim to study the performance of the algorithms against

various number of edges that need to be traversed (i.e., the average degree of nodes in the graph)

to show the scalability of our approach against dense graph. We keep the same 1000 users as in the

previous experiments, but enable two types of relationships, namely “f(riend)" and “c(o-worker)",

and randomly assign each relationship between users with one of these types. The number of

neighbors for each user is set in the quantities of 100, 200, 500 and 1000. Consider the fact that

there are only two types of relationship and the social graph in reality is usually a sparse graph,

1000 neighbors for each of 1000 users makes a relatively “dense” social graph for evaluation. We

then run different policies on these four graphs to compare their differences.

Given an access control policy, we randomly pick 1000 different pairs of requester and target

nodes from the graph, and run each algorithm 5 times on these 1000 pairs of nodes. Each measure-

ment is the average results of these 5000 runs. To make fair comparison between true and false

cases, we design different policies to get 5000 true cases and 5000 false cases. To evenly compare

between true cases of different settings, we scale the number of selected users so that we can get

results from the same amount of true cases.

4.2.2 Results

Figure 4.1 illustrates the results of the first set of experiments. We compare the BFS and DFS algo-

rithms using policies with different hopcount limits in both the true-case and false-case scenarios.

For true cases of *-pattern paths, Figure 4.1 (a) shows how the average running time changes with

respect to increase in hopcount limit. To make a more comprehensive comparison, in this particu-
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lar test, we apply the following values 10, 50 and 200 (which is close to 190, the average number

of friends claimed by Facebook [54]) to the number of neighbors for each user. *-pattern paths

are known to be more flexible than enumeration paths in path-checking. In fact, the results for

*-pattern record the time elapse of finding one of the shortest qualified path. As we expected,

when hopcount increments, the average execution time required for both algorithms increases as

well, but the trends tend to flatten after the hopcount reaches 4. It indicates that a qualified path

can be always found between two users within 4 hops in this setting. A probability calculation

also verifies this finding. In the case of 10 neighbors per user, the aggregate probability of finding

a qualified path is 1%, 10.5%, 67.3% for the first three hops, respectively, and eventually 100% at

the fourth hop. The probability reaches 100% within 3 hops in the other two denser graphs. We

also find that the BFS algorithm works slightly better than the DFS algorithm for large hopcount

limit in sparse graphs, as DFS takes many lengthy probes before finding a qualified path while BFS

does not suffer from much overhead in sparse graphs.

According to the classic idea of “six degrees of separation” and the findings of “small world

experiment” [44,53], any pair of people are distanced by no more than six intermediate connections

on average. A recent study by Backstrom et al [2] further indicates that the average distance on

the current social graph of Facebook is smaller than the commonly cited six degrees, and has

shrunk to 4.74 as Facebook grows. Based on these findings, for true cases of enumeration paths,

we restrain the hopcount limit up to 4, as our dataset is relatively much smaller than Facebook.

As shown in Figure 4.1 (b), when hopcount limit increments, the time cost by the BFS algorithm

increases significantly, due to the fact that it will not take the next hop without finishing search on

all edges at the current level; whereas a greater hopcount does not worsen the performance of the

DFS algorithm much.

Figure 4.1 (c) demonstrates the comparison between the two algorithms in false-case scenarios.

The false-case scenarios actually represent the worst case scenario for path-checking, where both

algorithms need to exhaustively search all possible paths within the hopcount limit from the starting

node. Therefore, the two algorithms perform similarly in both enumeration and *-pattern settings.
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As hopcount increases, the time costs of the algorithms increase approximately in the magnitude

of node degree, which match our expectation given in the complexity analysis.

Figure 4.2 represents a comparison of the performance of the two algorithms on graphs with

different node degrees. In true-case scenarios, as shown in Figure 4.2 (a, b and c), we notice that

incrementing hopcount limit increases the time for both algorithms to find a qualified path, since

the search space expands accordingly. We also observe that when dealing with 2-hop policies, the

time cost declines gradually with an increase in node degree. This is mainly because it is more

possible to find a qualified path between two nodes at an earlier time in denser graphs than sparser

graphs, although the worst possible time for denser graphs is way larger. For 3-hop policies, how-

ever, BFS algorithm has to explore all possible paths at the first 2 hops until attempting the 3rd

hop, thus spending much more time to find a match when node degree increases. DFS algorithm,

on the other hand, does not suffer from the greater search space brought by the increase of node

degree. In general, both algorithms perform similarly on 1 and 2-hop policies, but DFS algorithm

outperforms its BFS counterpart when dealing with 3-hop policies and larger. Similar to the first

set of experiments, we obtain similar results for both algorithms in false-case scenarios (4.2 (d)),

as both of them experienced an exhaustive search. Consistent with our previous analysis on com-

plexity, the results we observed from the four different social graphs reveal an increase of time

proportional to the node degrees as expected.

Our results indicate that both node degree and hopcount limit significantly affect the perfor-

mance of the two algorithms. In some extreme cases (e.g., long enumeration paths, high density

graph, etc.), searching a qualified path of 3 hops long may take very long time that the system and

users cannot bear. However, social graphs in reality are often big and sparse. Not many people will

have thousands of contacts in the social network. Moreover, people tend to interact with other users

within a close distance, so a large hopcount limit is barely seen in practice. If users specify policies

with loose constraints (e.g., *-patterns) and small hopcount limit, the algorithms are able to return

a result in a reasonably short time. We also suggest the system adds a time out for any access query

in order to avoid waitings for those extreme scenarios. Another important observation from our
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Figure 4.1: Experiment 1: BFS vs DFS on hopcount
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experiments is that although they have almost the same performance for 1 and 2-hop policies, DFS

algorithm in general is likely to be more suitable for policies with intermediate hopcount values

(e.g., 3, 4, 5, etc) than its BFS counterpart.
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Chapter 5: ATTRIBUTE-AWARE RELATIONSHIP-BASED ACCESS

CONTROL

This chapter presents an attribute-aware ReBAC model that integrates attribute-based policies into

the UURAC model, allowing finer-grained controls that are not available in ReBAC. We also pro-

vide an enhanced path-checking algorithm to determine the existence of the required attributes and

relationships in order to grant access.

5.1 The UURACA Model

In this section, we extend the UURAC model to facilitate attribute-aware ReBAC policy specifica-

tion and enforcement.1

5.1.1 Attributes in OSNs

OSNs maintain a massive amount of data about attributes of users and resources. Users keep

profile information as required by the OSNs, such as name, age, gender, etc. When a piece of

resource is uploaded to the OSN, the resource provider is also able to attach some metadata about

the resource. We can define policies based on this attribute information associated with users and

resources. However, the majority of ReBAC systems have focussed on some particular aspects of

relationships, such as type, depth, and strength. This makes ReBAC relatively simple and efficient,

but also limits the use of ReBAC in terms of control capability. In recent years, studies on attribute-

based access control (ABAC) have shown that various contextual information of user, resource,

and computing environment could be utilized for highly flexible and finer-grained controls [38,49,

55]. However, current ABAC solutions are not likely to be readily usable on top of a ReBAC in

OSNs. While typical ABAC models only consider the attributes of accessing user, target resource

and sometimes computing environment, attribute-aware ReBAC needs to specify which attributes

1We reiterate that in UURAC only user-to-user relationships are considered so resources can only occur as the

target of a relationship path. The relationship path itself can only include users.
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and whose attributes (i.e., user attributes, relationship attributes) on the relationship path between

accessing users and target/controlling users should be examined.

For attribute-aware ReBAC, we identify three types of attributes: node (user/resource) attribute,

edge (relationship) attribute and count attribute, as follows.

Node attributes. Users and resources are represented as nodes on social graph. Users carry

attributes that define their identities and characteristics, such as name, age, gender, etc. Resource

attributes may include title, owner, date, etc.

Edge attributes. Each edge is associated with attributes that describe the characteristics of the

edge. Such attributes may include relationship weights, types, and so on.

Both edge attributes and node attributes can apply to a single object or multiple objects. An

example of attributes for multiple edges is the transitive trust between two nodes that are not

directly connected. For instance, trust values of two or more edges need to be considered to

calculate overall trust between accessing user and target/controlling user. Attributes describing

multiple nodes are more commonly seen in OSNs, such as average age, common location, or

common alma mater between people. Relevant node and edge attributes can be also assembled to

enable policy combinations. For instance, Alice may specify a policy saying that “only users who

have more than 0.5 trust with Bob can access.”

Count attribute. Count attribute neither describes nor is associated with any node or edge. It

depicts the occurrence requirement for the attribute-based path specification, specifying the lower

bound of the occurrences of such path.

5.1.2 Attribute-based Policy Formulation

Attribute-based policy specifies access control requirements that are related to the attributes of

users and their relationships. Here, we formally define the basic attribute-based policy language.

• N and E are nodes and edges, respectively;

• NAk(1 ≤ k ≤ K) and EAl(1 ≤ l ≤ L) are the pre-defined attributes for nodes and edges,
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respectively, where K is the number of node attributes and L is the number of edge attributes;

• ATTR(n) and ATTR(e) are attribute assignments for node n and edge e, respectively,

where ATTR(n) ∈NA1×NA2×· · ·×NAK , and ATTR(e) ∈ EA1×EA2×· · ·×EAL.

Each attribute has only single value for its domain.

On the relationship path between two users in OSNs, there may exist many other users con-

nected with different relationships. Each user or relationship carries attributes, which can be uti-

lized for specifying access control rules. In some cases, the attributes of all users or relationships

on the path need to be considered. Sometimes, attributes of only certain users or relationships are

used. As shown in Table 5.1, we use the universal quantifier ∀ and the existential quantifier ∃ to

denote “all” and “at least one” user(s) or relationship(s), respectively. The notation [ ] is used to

represent ranges on the relationship path while { } denotes a set of users/relationships located at a

specific distance on the path between accessing user and target/controlling user. In order to express

a range or exact position on the path, we use plus and minus signs to indicate the forward (from the

start) and backward directions (from the end), followed by a number that denotes the position from

the front or the back. Note that indicator for users starts from 0 while indicator for relationships

begins from 1. For example, for users, +0 means the starting user and -1 represents the second

last user on the path; while for relationships, +1 indicates the first relationship on the path and -2

means the second last. The plus-minus sign in the last two rows denotes the forward or backward

direction rather than its normal mathematical meaning.

Table 5.1: Attribute Quantifiers

∀ [+m, -n] All entities from the mth to the nth last, m+n ≤ h where m and n are non-negative

integers and h is a hopcount limit

∀ [+m, +n] All entities from the mth to the nth, m ≤ n ≤ h
∀ [-m, -n] All entities from the mth last to the nth last, h ≥ m ≥ n
∃ [+m, -n] One entity from the mth to the nth last, m+ n ≤ h
∃ [+m, +n] One entity from the mth to the nth, m ≤ n ≤ h
∃ [-m, -n] One entity from the mth last to the nth last, h ≥ m ≥ n

∀ {2{±N}} All entities in this set

∃ {2{±N}} One entity in this set
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An attribute-base policy rule is composed of a quantifier specifying the quantity of certain

node/edge attributes, a function of these node/edge attributes f(ATTR(N), ATTR(E)), and a

count attribute predicate count ≥ i, as follows.

〈quantifier, f(ATTR(N), ATTR(E)), count ≥ i〉

Note that the quantifier is applied to a node/edge function, but not to the count attribute predi-

cate. For instance, R1 specifies a rule saying that “there must be at least five common connections

between the requester and the owner, whose occupation is student”. In R2 and R3, the count at-

tribute predicate is not used and this is shown as ‘_’, which indicates count ≥ 1 in default. Here, the

policy contains a rule indicating that “a user who is connected through adults whose addresses are

‘Texas’ can access”. R3 requires that on a path between the accessing user and target/controlling

user, users in three specific distances must be adults.

• R1 : 〈∃[+1,−1], occupation(u) = “student”, count ≥ 5〉

• R2 : 〈∀[+1,−1], (age(u) ≥ 18) ∧ (address(u) = “Texas”), _〉

• R3 : 〈∀{+1,+2,−1}, (age(u) ≥ 18), _〉

5.1.3 Policy Specifications

Attribute-based policies are applied on certain relationship paths between accessing user and tar-

get/controlling user. For this, we extend the regular expression-based policy specification language

proposed in Chapter 3. Table 5.2 defines a list of notations used in the policy specification lan-

guage.

Attribute-aware UURAC policies include two parts: a requested action, and a graph rule that

conditions the access based on the social graph. As shown in Table 5.3, we identify several differ-

ent types of policies. Actions are denoted in the passive form act−1 in target user policy and target

resource policy, since target user/resource is always the recipient of the action. Target resource

49



policy has an extra parameter uc, indicating the controlling user of the resource. The differen-

tiation of active and passive form of an action does not apply to system-specified policies, as

these policies are not associated with any particular entity in action. However, when specifying

a system policy for a resource, we can optionally refine the resource in terms of resource type

(r.typename, r.typevalue).

Table 5.4 defines the syntax for the graph rules using Backus-Naur Form (BNF). Each graph

rule specifies a startingnode and a pathrule. Starting node denotes the user where the policy

evaluation starts. A path rule represents a collection of path specs. Each path specification consists

of a pair (path, hopcount) that specifies the relationship path pattern between two users and the

maximum number of edges on the path, which need to be satisfied in order to get access. Multiple

path specifications can be connected with conjunctive “∧" and disjunctive “∨" connectives. “¬"

over path specifications denotes absence of the specified pair of relationship pattern and hopcount

limit. The pattern of relationship path path represents a sequence of type specifiers from the

starting node to the evaluating node.

Unlike in UURAC, we add a new term AttPolicy to the grammar to facilitate attribute-based

policies. It can be found either after the whole path specification (path, hopcount) or a segment

of the path pattern path. The one that applies to (path, hopcount) is called global attribute-based

policy. When it follows a segment of path, it is a local attribute-based policy that only applicable

for this segment. For simplicity, the examples hereafter only use global attribute-based policies.

Table 5.2: UURACA Policy Specification Notations

Concatenation (·) Joins multiple characters σ ∈ Σ or Σ itself end-to-end, denoting a

series of occurrences of relationship types.

Asterisk (*) Represents the union of the concatenation of σ with itself zero or more

times.

Plus (+) Denotes concatenating σ one or more times.

Question Mark (?) Represents occurrences of σ zero or one time.

Disjunctive Connective (∨) Indicates the disjunction of multiple path specs.

Conjunctive Connective (∧) Denotes the conjunction of multiple path specs.

Negation (¬) Implies the absence of the specified pair of relationship type sequence

and hopcount.

Colon(:) Separates relationship pattern and attribute-based policies
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Table 5.3: UURACA Access Control Policy Representations

Accessing User Policy 〈act, graphrule〉
Target User Policy 〈act−1, graphrule〉
Target Resource Policy 〈act−1, uc, graphrule〉
System Policy for User 〈act, graphrule〉
System Policy for Resource 〈act, (r.typename, r.typevalue), graphrule〉

Table 5.4: UURACA Grammar for Graph Rules

GraphRule → “(”StartingNode“, ”PathRule“)”
PathRule → AttPathSpecExp |AttPathSpecExp Connective PathRule
AttPathSpecExp → PathSpecExp |PathSpecExp“ : ”AttPolicy
Connective → ∨ |∧
PathSpecExp → PathSpec |“¬”PathSpec
PathSpec → “(”AttPath“, ”HopCount“) ”|“(”EmptySet“, ”HopCount“)”
HopCount → Number
AttPath → Path |Path“ : ”AttPolicy
Path → TypeSeq |TypeSeq Path
EmptySet → ∅
TypeSeq → AttTypeExp |AttTypeExp“· ”TypeSeq
AttTypeExp → TypeExp |TypeExp“ : ”AttPolicy
TypeExp → TypeSpecifier |TypeSpecifier Quantifier
AttPolicy → use dedicated parser to process

StartingNode → ua|ut|uc
TypeSpecifier → σ1|σ2| . . . |σn|σ−1

1 |σ−1
2 | . . . |σ−1

n |Σ where Σ =
{σ1, σ2, . . . , σn, σ−1

1 , σ−1
2 , . . . , σ−1

n }
Quantifier → “ ∗ ”|“?”|“ + ”
Number → [0− 9]+

We now show how attribute-based rules can be applied to some examples within UURACA.

Example 1: Node attribute and count attribute policy. Alice wants to reveal her profile to users

who share at least five common student friends. She can specify the following policy for her friends

of friends:

• P1: 〈profile_access, (ua, ((ff, 2): ∃[+1,−1], occupation(u) = “student”, count ≥ 5))〉

If she wants to allow someone who shares a common friend Bob with her to see her profile, the

policy can be represented as follows:

• P2: 〈profile_access, (ua, ((ff, 2): ∃[+1,−1], name(u) = “Bob”, _))〉
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For P1, the system needs to find paths that match (ff, 2) and check the occupation attribute of

users on the paths. If there exist at least five such paths, ua is allowed to see the profile information

of the target. For P2, once a (ff, 2) path is found and the name of the user on the path equals to

Bob, the system would grant access.

Example 2: Edge attribute policy. Alice grants users to access Photo1 if the user is within 3 hops

away and can reach her on a path with a minimum 0.5 trust value of friend relationships on each

hop. Such policy is specified as follows:

• P3: 〈read, Photo1, (ua, ((f∗, 3) : ∀[+1,−1], trust(r) ≥ 0.5, _))〉

The system will check each edge on the path to ensure its trust value meets the requirement, before

granting access.

Example 3: Capturing a UURAC policy. The following policy only contains relationship-based

requirements (f∗, 3), where node/edge attributes and count attribute are both empty:

• P4: 〈poke, (ua, ((f∗, 3) : ∃[+0,−0], _, _))〉

The UURACA model is seamlessly compatible with the UURAC model. The example 3 shows

how UURAC policy can be captured in UURACA.

5.2 Path-Checking Algorithm

This section addresses the access evaluation of UURACA. UURAC [17] provides a path-

checking algorithm to find a qualified path between the access requester and the target (or the

resource owner) that meets the ReBAC requirements. To enforce attribute-based policies, the ac-

cess evaluation should incorporate attribute-based policies during path-checking. One may run

attribute checking on the result paths found by the UURAC algorithm. However, this is likely to

be inefficient. In this section, we present a modified path-checking algorithm to incorporate an

attribute-based policy evaluation on the fly during path finding process.
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Algorithm 5.1 AccessEvaluation(ua, act, target)
1: (Policy Collecting Phase)

2: if target = ut then
3: AUP ← ua’s policy for act, TUP ← ut’s policy for act−1, SP ← system’s policy for act
4: else
5: uc ← owner(rt), AUP ← ua’s policy for act, TRP ← uc’s policy for act−1 on rt, SP ← system’s

policy for act, r.type
6: (Policy Evaluation Phase)

7: for all policy in AUP , TUP /TRP and SP do
8: Extract graph rules (start, path rule) from policy

9: for all graph rule extracted do
10: Determine the starting node, specified by start, where the path evaluation starts

11: Determine the evaluating node which is the other user involved in access

12: Extract path rules path rule from graph rule

13: Extract each path spec path, hopcount and/or attribute rule attpolicy from path rules

14: Simultaneously path-check each path spec and evaluate the corresponding attribute rule using Al-

gorithm 5.2

15: Evaluate a combined result based on conjunctive or disjunctive connectives between path specs

16: Compose the final result from the result of each policy

5.2.1 Access Evaluation Procedure

In UURACA, access requests can be evaluated as described in Algorithm 5.1. For an access request

(ua, act, target), the system fetches ua’s policy about act, target’s act−1 policy and the system-

specified policy for act. The decision module extracts path specification (path, hopcount) and

attribute-based rules attpolicy from these policies. It runs the path-checking algorithm to deter-

mine the result for each policy. During path-checking, the decision module also needs to keep track

of all of the involved attributes and make sure they satisfy the attribute-based policies. Finally, the

results of all chosen policies in evaluation are composed into a single result. The existence of

multi-user policies may raise policy conflicts. To resolve this, we can adopt the conflict resolu-

tion policy proposed later in Chapter 6, which is based on a disjunctive, conjunctive, or prioritized

strategy.

5.2.2 Attribute-aware Path Checking Algorithm

The path-checking algorithm, as shown in Algorithm 5.2, uses a depth-first search (DFS) strategy

to traverse the social graph G from a starting node s. The mission is to find relationship paths

53



between the starting node s and the evaluating node t, that satisfy the policy. The pair of path

pattern path and hopcount limit hopcount specifies the relationship-based requirements, whereas

globalattpol indicates the attribute-based rules. For ease of explanation, we only consider global

attribute-based policies in this section.

Let us consider the example policy P1 in Section 5.1.3: 〈profile_access, (ua, ((ff, 2): ∃[+1,

−1], occupation(u) = “student”, count ≥ 5))〉. The grammar extracts the starting node ua and

splits the relationship-based rules (ff, 2) and the attribute-based rules “∃ [+1,−1], occupation(u)

= “student”, count ≥ 5”. Algorithm 5.2 then constructs a DFA (deterministic finite automata)

from the regular expression ff . This is done by the function REtoDFA(). Variables currentPath

and stateHistory are initialized to NIL and the initial DFA state, respectively. The attribute-

based rule is divided into three parts: “∃[+1,−1]”, “occupation(u) = ‘student’ ” and “count ≥ 5”.

“∃[+1,−1]” quantifies the whole path between the access requester and the target (or the resource

owner) to which the following node attribute function applies. “occupation(u) = ‘student’ ” is a

function of node attributes that checks the occupation of the users on the path. The count attribute

predicate “count ≥ 5” specifies the required number of qualified relationship paths. To store the

attribute values of nodes and edges during traversal in this example, we need space for attributes

of 1 node and 2 edges. In general, if the interval is [+a,−b] and the hopcount limit is c, we need

to assign space for attributes of (c - a - b + 1) nodes and (c - a - b) edges.

After setting the hopcount indicator d to 0, Algorithm 5.2 launches the DFS traversal function

DFST (), shown in Algorithm 5.3, from the starting node. Given the node u, the algorithm first

makes sure taking one step forward does not violate the hopcount limit. Otherwise, it has to exit

and return to the previous node. If further traversal is allowed, the algorithm starts to pick an edge

(u, v, σ) from the collection of all incident edges leaving u one by one. According to the path

pattern ff in the example, at the first step, the algorithm specifically looks for an unvisited edge of

type f terminating at a node other than the evaluating node (case 6). If such edge is found, let’s say

(ua, u1, f), the algorithm increments d by 1, adds the edge to currentPath, moves the DFA from

the initial state by taking transition f and updates the DFA state history accordingly. It also adds
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the corresponding attributes of edge (ua, u1, f) and node u1 to the attribute list attrList for later

evaluation, since u1 is 1 hop away from ua and thus is within the range [+1, -1]. The algorithm

then continues to run DFST () on the new node u1. From node u1, it repeats the previous process

again by checking the hopcount limit and picking new incident edges. Since the hopcount limit

is 2, the algorithm has to find an unvisited edge of type f that terminates at t (case 2). Once

the edge (u1, t, f) is discovered, the algorithm goes on to find the corresponding attributes for

evaluation. [+1, -1] indicates that we also need to check the attributes of the second last node on

the path, which is u1. Since we already added u1’s attributes to the list, the algorithm simply runs

attribute function f(ATTR(u1)) to see if it satisfies the requirements. If yes, we then check the

count attribute, which is count in this case. The policy says it requires five qualified paths, thus

the algorithm has to increment the counter and return to the previous node to search for another

4 paths. If (ua, u1, f)(u1, t, f) is the fifth path we found, DFST (u1) should return true and all

its previous DFST () calls as well. Eventually, it makes Algorithm 5.2 to return true, indicating

we found the necessary amount of paths that satisfy the policy. If the node/edge attributes do not

match the requirements, the algorithm removes the attributes from the list (line 18-19) and try the

next edge. After finishing edge searching at this level and returning to the previous DFST () call

(line 38-43), it has to drop the edge and reset all variables to the previous values. Algorithm 5.2

returns false after all incident edges leaving ua have been unsuccessfully searched.

The proof of correctness of this algorithm is fundamentally the same as the algorithm for UU-

RAC in the previous chapter. The new algorithm neither brings in more edges to be considered

nor increases the depth of recursive traversal to be taken. Hence, its complexity is still bounded

between O(dminHopcount) and O(dmaxHopcount), where dmin and dmax stand for the minimum

and maximum out-degree of node, and Hopcount denotes the hopcount limit. Attribute-base check

introduces additional overhead when the algorithm finds a possible qualified path. The overhead

costs are proportional to the amount of attributes as well as the type of attribute functions consid-

ered in the policy, which is not related to the structure of the social graph.
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Algorithm 5.2 DFSPathChecker(G, path, hopcount, s, t, globalattpol)
1: DFA ← REtoDFA(path); currentPath ← NIL; d ← 0
2: stateHistory ← DFA starts at the initial state

3: Extract the quantifier symbol and interval/set information from globalattpol
4: Get the required rules for attributes of edges and nodes f(ATTR(E), ATTR(N))
5: Fetch the requirements of count attribute “count ≥ i”. If it is omitted, “count ≥ 1”.

6: Assign temporary space for attributes according to the size of the interval/set and the hopcount limit

7: Initialize counter count ← 0
8: if hopcount �= 0 then
9: return DFST(s)

Algorithm 5.3 DFST (u)
1: if d+ 1 > hopcount then
2: return FALSE

3: else
4: for all (v, σ) where (u, v, σ) in G do
5: switch
6: case 1 v ∈ currentPath
7: break

8: case 2 v /∈ currentPath and v = t and DFA with transition σ is at accepting state

9: if v and (u, v, σ) is within the range specified by quantifier then
10: attrList ← attrList.(ATTR(v), ATTR(u, v, σ))
11: if f(ATTR(v), ATTR(u, v, σ)) = TRUE then
12: count ← count+ 1
13: if count ≥ i then
14: d ← d+ 1; currentPath ← currentPath.(u, v, σ)
15: currentState ← DFA takes transition σ
16: stateHistory ← stateHistory.(currentState)
17: return TRUE

18: else
19: attrList ← attrList\(ATTR(v), ATTR(u, v, σ))
20: else
21: d ← d+ 1; currentPath ← currentPath.(u, v, σ)
22: currentState ← DFA takes transition σ
23: stateHistory ← stateHistory.(currentState)
24: return TRUE

25: break

26: case 3 v /∈ currentPath and v = t and transition σ is valid for DFA but DFA with transition σ is not at accepting state

27: break

28: case 4 v /∈ currentPath and v = t and transition σ is invalid for DFA

29: break

30: case 5 v /∈ currentPath and v �= t and transition σ is invalid for DFA

31: break

32: case 6 v /∈ currentPath and v �= t and transition σ is valid for DFA

33: d ← d+ 1; currentPath ← currentPath.(u, v, σ)
34: currentState ← DFA takes transition σ
35: stateHistory ← stateHistory.(currentState)
36: if (DFST(v)) then
37: return TRUE

38: else
39: d ← d− 1; currentPath ← currentPath\(u, v, σ)
40: attrList ← attrList\(ATTR(v), ATTR(u, v, σ)
41: previousState ← last element in stateHistory
42: DFA backs off the last taken transition σ to previousState
43: stateHistory ← stateHistory\(previousState)
44: return FALSE
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Chapter 6: THE URRAC MODEL

In this chapter, we develop an access control model for OSNs that incorporates not only U2U

relationships but also U2R and R2R relationships. The model also captures controls on users’ ad-

ministrative activities, and provides simple specifications of conflict resolution policies to resolve

possible conflicts among authorization policies.

6.1 Beyond U2U Relationship-based Access Control

In this section, we discuss limitations of U2U relationship-based access control and build a taxon-

omy of user’s access types in OSNs based on U2U, U2R and R2R relationships.

6.1.1 Limitation of U2U Relationship-based Access Control

In OSNs, users are encouraged to create profiles, add content onto their pages (e.g., photos, videos,

blogs, status updates and tweets), and share these resource objects with other peers. OSNs offer

their users various types of user interaction services, including chatting, private messaging, poking

and social games. As OSN systems mature, various types of resources need to be protected, such

as user sessions, relationships among users and resources, access control policies and events of

users. As shown in Figure 6.1(a), users can launch access requests against both resources (e.g.,

view a photo or create an access control policy) and users (e.g., invite another user to a game or

poke another user).

Social graph represents a global mapping of all individual users and how they are connected

in an OSN, where user is a node and a relationship between users is an edge. Access control in

most existing OSNs are based on the topology of the social graph, so-called relationship-based

access control. Typically, granting access permission to an accessing user is subject to the exis-

tence of a particular relationship or a particular sequence of relationships between the accessing

user and the target user/resource owner, and access control policies are specified in terms of such

U2U relationships. When a user requests access to a resource, current OSNs rely on an implicit
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Figure 6.1: Access in OSNs

relationship, namely ownership, between the resource and its owner, hence the authorization of

such U2R access is still based on the underlying U2U relationships.

However, due to the various functionality offered by today’s OSNs, there exist several different

types of relationships between users and resources in addition to ownership. Consider an example

where Bob posts a photo that contains Alice and Carol’s images in it and tags them. OSNs usually

allow only the owner Bob to have control on who can view the photo, regardless of whether or not

Alice and Carol may wish to release their images. To enable Alice and Carol control capability

on the photo, their relationships with the photo, which is not ownership, should be considered for

authorization purposes. After the photo has been shared by Bob’s friends several times, more and

more users from different neighborhoods in the network come to view the photo and comment on

it. When Dave reads through all the comments in Bob’s photo and becomes curious about another

user Eve who has commented recently, he decides to poke her to say hello. In this case, Dave and

Eve are connected through the photo, not through another user (such as the owner of the photo

Bob). Also, users may share or like the blog posts or videos posted by others, and gain the ability

to determine how the shared/liked copy of the original content or the fact of sharing and liking

activities can be seen by others. Consider another scenario where Betty finds a weblink originally
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posted by Ed interesting and then shares it with her friends. From her activity, she acquires the

ability to decide how the weblink can be available to others. As users get increasingly involved

in these activities in OSNs, current U2U relationship-based access control mechanism is not able

to offer the appropriate control and requires extensions to bring U2R and R2R relationships into

consideration.

In recent years, Facebook has gradually expanded the idea of social graph to so-called Open

Graph as it launches new services such as photos and places, and includes these in the graph

over time. Recently even further extensions to incorporate arbitrary activities and objects are be-

ing pushed so as to codify user behaviors effectively. These recent trends in commercial OSNs

strengthen our belief that it is useful to include resources, such as objects and activities, in the

social graph. By means of such an extended social graph, users and all of the resources related

to users are interconnected through U2U, U2R, and even R2R relationships, allowing stronger

expressive power of relationship-based access control policies.

6.1.2 Taxonomy of Access Scenarios

As shown in Figure 6.1(b), in OSN, a user can access other users (user as a target) or resources

(resource as a target). By means of U2U, U2R and R2R relationships, an accessing user and a target

user can have a direct relationship or indirect relationships with user(s) in between, resource(s) in

between or user(s) and resource(s) in between. Likewise, an accessing user and a target resource

can also be characterized in terms of the entities on the relating path.

In the first two cases of accessing a target user, there is no resource involved. An accessing user

should either have a particular direct U2U relationship (shown as UU) or a particular sequence of

U2U relationships (shown as UU+U)1 with the target user. Examples of such access to a target

user are that Alice’s direct friends can poke her, and Bob’s friends of friends can request friendship

invitation to him. If resources are introduced onto the path between the accessing user and the

target user, it brings in U2R and R2R relationships and leads to other possible combinations of

1Note, “+” denotes one or more occurrences of the applicable entity (U, R or U|R) on the path.
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relationships. For instance, “users who are tagged in the same photo can visit each other’s profile

even though they are not friends” is a typical UR+U example that can be found in OSNs, in which

case the photo actually links two unconnected users together. We can make even more complicated

policies by connecting users through both users and resources (shown as U(U|R)+U). In the previ-

ous example, friends of one of the tagged users may be able to access another tagged user through

their mutual friend and the photo.

Similarly, a user may access a resource that directly relates to her (shown as UR), or may find a

resource through one or more users in the network (shown as UU+R). Most of the current commer-

cial OSNs and the prior work [11,15,23–25] deal with these two cases with an implicit assumption

of the existence of “own” relationship. When a user requests an access against resource, the system

checks if there is a qualified relationship between the accessing user and the resource owner, and

then determines the authorization. We believe that it is useful to distinguish different types of U2R

relationships, such as “tag”, “share” and “like”, in the policy specifications rather than relying only

on “own”. Incorporating R2R relationships and connecting resources on the path enables UR+R

and U(U|R)+R cases, so that users may be able to access some resources that are connected to

users’ related resources. For example, if user Alice is tagged in one of Bob’s photo, then Alice

may get the privilege to view other photos in the same album without being Bob’s contact of any

type.

The above discussion indicates that allowing U2R and R2R relationships in access control

gives users more complete and flexible expressive power than the currently prevailing U2U-only

approaches.

6.2 The URRAC Model Components and Characteristics

In this section, we identify the components of the proposed relationship-based access control model

for OSNs, and discuss crucial characteristics of the model.
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Figure 6.2: The URRAC Model Components

6.2.1 Components

Figure 6.2 shows a conceptual diagram for the relationship-based access control model. It com-

prises six categories of basic components: users, sessions, resources, policies, social graph and

decision module, as discussed below.

Users. A user represents a human being registered in an OSN system to whom authorization

may be granted. Users maintain relationships with each other, own a number of resources, and

perform various kinds of actions against resources and users in the system. Users can be identi-

fied as accessing users (AU ) and target users (TU ), based on the roles they play with respect to

access. Accessing users are users who perform certain types of access against targets, carrying au-

thorization policies (Accessing User Policies or PAU ). Target users are users against whom access

is performed. Target users also carry authorization policies (Target User Policies or PTU ).

Sessions. A session is an active instance of a user who has logged into the OSN. Accessing

users perform access through sessions (AS), while target users may or may not have a session

instance (TS) at the time of access. In other words, some accesses can be placed only when a

target user is online (e.g., chatting) while other accesses do not require this and can be placed

on a target user who is not logged in at the time of the accesses (e.g., poking). The user-session

distinction allows sessions to have different policies and attributes from those of the corresponding

user by partially inheriting them possibly along with some other policies and attributes. This is
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depicted in Figure 6.2 as “constrained by”. A user can have multiple sessions with differing access

control policies, while a session is only associated with a single user. In general, all sessions are

considered objects and can be created, suspended, or resumed by another session or by the user.

Sessions are also called subjects in the access control literature. The term session was introduced

in the role-based access control literature and has become widely used in that context.

Resources. Resources are non-user targets to be protected in access. They include target

user’s sessions (TS), objects (O) users shared in the system as well as access control policies (P ).

Because resources are not human beings, access control policies for resources are defined by users

who possess the corresponding administrative privileges.

Policies. Access control policies are a set of rules that govern the ability of sessions (subjects)

to access targets. Like in many computer systems, OSNs allow the system security administrators

to define a central policy that is guaranteed to be enforced for all users and resources in the system,

called system-specified policy (PSys). Additionally, users have the ability to express own prefer-

ences with respect to themselves or their related users and resources. Accessing user policy (PAU ),

target user policy (PTU ), accessing session policy (PAS), object policy (PO), policy for policy (PP )

are defined by users and applied to accessing users, target users, accessing sessions, objects and

policies, respectively. System-specified policies consist of two types of policies, namely authoriza-

tion policies and conflict resolution policies. Authorization policies allow the system and users to

specify who is authorized to exercise which action on the user or resource, while conflict resolution

policies specify how conflicts among authorization policies from multiple parties are to be solved.

For the purpose of this work we assume that conflict resolution policies are specified entirely by

the system administrators as part of PSys.

Social Graph (SG). Social graph denote connections among users and resources in the sys-

tem. Although “relationships” on the graph usually refer to relationships among individual users

in many OSN systems in practice and theory, they also can include U2R relationships and R2R

relationships as we have argued above. U2U relationships are typically represented by the social

graph. We extend the social graph to incorporate U2R relationships and R2R relationships as well,
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thus forming a network of users, sessions, objects as well as their access control policies.

Decision Module (DM ). The access decision module in Figure 6.2 consolidates all the nec-

essary policies from PAS , PTU , PTS , PO, PP and PSys as well as the relationships on the social

graph, and makes a decision at the time of request. Access decision module can handle potential

policy conflicts by consulting conflict resolution policies in PSys.

6.2.2 Characteristics

We identify three essential characteristics that need to be addressed by OSN access control models,

as follows.

Policy Individualization. As identified in [45,46], unlike in traditional access control systems,

OSNs allow individual users to express their own preferences over access to the content rather than

having a single system-wide access control policy defined by the system security administrator.

Moreover, users other than the resource owner are also able to configure policies for user and

resource related to them. For example, parents of a child want to prescribe a boundary within

which their child might perform access, and Alice wants to block her colleagues from seeing the

party pictures which contain her image. The system needs to collect all of the related individual

policies along with the system-specified policies for making access control decisions.

Policy Administration. In OSN, policy administration becomes very important since allowing

individual users to specify policies requires the OSN to ensure that only the right users are autho-

rized to specify policies. Our model enables users to specify policies for other users and resources

as long as they meet the relationship requirement stated in the policies for the target policy. For

example, the system-specified policy may allow users who have “own” or “tag” relationships with

the resource to set the policy for that resource. Then the owner or tagged user can control the

resource’s policy and later modify it to enable or disable who can access the resource.

User-session Distinction. We know that a session is a process in execution on behalf of a user.

A user can have multiple sessions with different sets of privileges by creating different degrees

of access control policies with the original user’s. The user-session distinction facilitates better
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security and privacy control by minimizing a session’s privilege to an adequate level. It becomes

especially useful in OSN environments as more and more smart devices and location-based appli-

cations are introduced into OSN world. Users logged in from different devices may have distinct

access control policies and thus distinct privileges. Users with location-based services enabled may

be offered extra functionality than ordinary users are. Much of the current literature in OSN access

control does not distinguish a session from a user. We believe differentiating user and session is

crucial for effective access control in OSNs.

6.3 The URRAC Model

In the following, we formally define an access control model for OSNs, expressing authoriza-

tion policies and conflict resolution policies in terms of relationships existing among users and

resources in the system.

6.3.1 Model Definition

We begin by identifying each component of the model.

U is the current set of users, including accessing users (AU ) and target users (TU ). Associated

with each user is a collection of sessions. S is the current set of sessions, which is composed

of accessing sessions (AS) and target sessions (TS). R is the set of resources, including target

sessions (TS), objects (O) and access control policies (P ). We refer to target users and resources

as targets, which are the targets of access.

We write ACT = {act1, act2, . . ., actn} which is the set of OSN supported actions, denoting

the access modes a user or a session can execute in the system. Each action is defined in active

form with accessing user or session as the actor and target users and/or resources as targets. For

each action acti the passive form act−1
i represents the action from the target’s perspective.

The overall set of policies P in the OSN is categorized as follows.

• PAU ⊆ P , PTU ⊆ P , PAS ⊆ P , PTS ⊆ P , PO ⊆ P , PP ⊆ P and PSys ⊆ P are au-

thorization policies for accessing user, target user, accessing session, target session, objects,
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policies and system-specified policies, respectively.

• APSys ⊆ PSys and CRPSys ⊆ PSys represent system-specified authorization policies and

conflict resolution policies, respectively.

The first two user-specified policies PAU and PTU are associated with and specified by the

corresponding users, while rest of the user-specified policies are specified by users but associated

with the resource or another user. The user who actually specifies a policy for other user or resource

is called the controlling user (CU ), who has a certain type of relationship with the user/resource to

whom the policy applies.2 Accessing session policies are partially inherited from its corresponding

accessing user’s policies, but may have additional content specific to the session, such as location.

System-specified policies, on the other hand, are expressed by the system and applied to all relevant

activities across the system. While a resource is always the target of an access, a user, on the other

hand, can participate both as an accessing user or a target user in an access with different access

control requirements. Hence, the distinction between the active and passive forms of an action

becomes significant. We write act and act−1 as the active and passive form of an action act,

respectively. Accessing user policies, accessing session policies and system-specified policies are

indexed by act, and target user policies, target session policies, object policies and policies for

policy are indexed by act−1. Authorization policies specified by multiple users may possibly give

conflicting results for a requested access. We introduce system-defined conflict resolution policies

(CRPSys) to make unambiguous decisions for authorization policies specified by multiple parties

with conflicting interests. The specification of policies is discussed below in subsection 6.3.2.

As depicted in Figure 6.3, we abstract an OSN as a directed labeled simple graph, where each

vertex represents a user or a resource, whereas each edge corresponds to a relationship among

users and resources. The social graph of an OSN SG is formally denoted as a triple 〈V,E,Σ〉:

• V = U ∪ R is a finite set of vertices on the graph, representing registered users and their

resources in the system.

2In some cases, accessing a user/resource is subject to the relationships existing between the accessing user and

the controlling user [17]. See Example 3 in Section 6.4.
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Figure 6.3: A URRAC Sample Social Graph

• Σ = Σu_u∪Σu_r∪Σr_r = {σ1, σ2, . . . , σn, σ
−1
1 , σ−1

2 , . . . , σ−1
n }, denotes the set of relationship

type specifiers in the system. Each relationship type specifier σ is represented by a string of

characters. Given a relationship type σi ∈ Σ, we write the inverse of the relationship σ−1
i

∈ Σ. Relationships are further divided into three categories: U2U (U_U ), U2R (U_R) and

R2R (R_R) relationships. We express this formally as follows.

– U_U relationships: U × Σu_u × U ,

– U_R relationships: U × Σu_r ×R or R× Σu_r × U ,

– R_R relationships: R× Σr_r ×R,

where Σu_u ⊆ Σ, Σu_r ⊆ Σ and Σr_r ⊆ Σ.

• E = Eu_u∪Eu_r∪Er_r, where Eu_u ⊆ U×Σu_u×U , Eu_r ⊆ (U×Σu_r×R)∪(R×Σu_r×U),

Er_r ⊆ R×Σr_r ×R, represents the existing relationships among users and resources in the

system.

Note that E is defined as directed, since not all of the relationships in OSNs are mutual. For

every σi ∈ Σ, there is σ−1
i ∈ Σ representing the inverse of relationship type σi. Although not

explicitly shown on the social graph, we assume the original relationship and its inverse twin

always exist simultaneously. Given a vertex v1 ∈ V , a user v2 ∈ V and a relationship type σ ∈ Σ,
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Table 6.1: URRAC Policy Specification Notations

Concatenation (·) Joins multiple characters σ ∈ Σ or Σ itself end-to-

end, denoting a series of occurrences of relationship

types.

Asterisk (*) Represents the union of the concatenation of σ with it-

self zero or more times. For example, friend∗ means

direct or indirect friends of a user or user herself. Σ∗
is

∞⋃

i=0
Σi, denoting the node itself or nodes with any

connection on social graph.

Plus (+) Denotes concatenating σ one or more times. Similarly

for Σ+.

Question Mark (?) Represents occurrences of σ zero or one time.

co − worker· friend? means only co-worker or co-

worker’s direct friends can access. Similarly for Σ?.

Square Bracket ([]) Contains a path rule: a sequence of relationship spec-

ifiers with an indicated hopcount limit.

Double Square Bracket ([[]]) Denotes skipping of the path rule contained. The

meaning of the skipping feature is discussed in the

text.

Disjunctive Connective (∨) Indicates the disjunction of multiple path specs.

Conjunctive Connective (∧) Denotes the conjunction of multiple path specs.

Negation (¬) Implies the absence of the specified pair of relation-

ship type sequence and hopcount.

a relationship (v1, v2, σ) says that there exists a relationship of type σ originating from vertex v1

and terminating at v2. There always exists an equivalent form (v2, v1, σ
−1) at the same time.

It remains to formally define the concept of access request.

• (s, act, T ) represents an access request, where s ∈ S indicates the accessing session, act ∈
ACT denotes the requested action and T ⊆ (2TU∪R − ∅) gives a non-empty set of target

users and resources;

The cardinality and types of the targets are determined by the action.

6.3.2 Policy Specifications

The notations used in the policy specification language are defined in Table 6.1, familiar from

typical regular expression notation with the addition of hopcount limits and skipping. As de-

scribed earlier, there are several types of access control policies: accessing user policy, accessing
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Table 6.2: URRAC Authorization Policy Representations

Accessing User Policy 〈act, graphrule〉
Accessing Session Policy 〈act, graphrule〉
Target User Policy 〈act−1, graphrule〉
Target Session Policy 〈act−1, graphrule〉
Object Policy 〈act−1, graphrule〉
Policy for Policy 〈act−1, graphrule〉
System Policy for User 〈act, graphrule〉
System Policy for Resource 〈act, o.type, graphrule〉

where o.type is optional

session policy, target user policy, target session policy, object policy, policy for policy, and system-

specified policy. Here, system-specified policies comprise authorization policies and conflict reso-

lution policies. System-specified authorization policy allows the system to express access control

requirements that apply to the entire set of users or resources, while system-specified conflict res-

olution policy deals with the potential conflicts of interest among the user-specified authorization

policies.

Authorization Policy (AP). Authorization policies are modeled in different formats as shown

in Table 6.2. Accessing User Policy and Accessing Session Policy are represented as a pair 〈act,
graph rule〉 and regulate how an access requester in access can behave. Here, act indicates the

requested action while graph rule denotes the access rule based on social graph. Target User

Policy, Target Session Policy, Object Policy and Policy for Policy are about how others can perform

access on the target, so they use passive form act−1 instead of act because the target is always

the entity to be accessed, whereas graph rule has the same meaning as in the previous policies.

System-specified policies do not differentiate the active and passive form of an action, since they

are not attached to a particular entity in action. However, it is likely that we need to refine the

scope of the objects to which the policies apply, thus we bring object types o.type into policy

specifications. Hence, system-specified policies are defined in two formats: 〈act, graph rule〉 for

user and 〈act, o.type, graph rule〉 for resource. Note that o.type is optional and used only if target

is an object.

Table 6.3 defines the grammar for the graph rules, based on which each graph rule specifies
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a startingnode and a pathrule. Starting node stands for the user or resource where the policy

evaluation begins, which can be the accessing user, the controlling user or the target. A path rule is

composed of one or more path specs, with each spec stating the required sequence of relationship

types and the corresponding hopcount limit for the sequence. Users are allowed to specify a more

complicated and fine-grained policy for an action against a target by connecting multiple path

specs with conjunctive connective “∧” and disjunctive connective “∨”. Also, negation “¬” over

path specs is used to imply the absence of the specified pattern of relationship types and hopcount

limit as authorization requirements. Each path spec is denoted as a tuple (path, hopcount), where

path represents from the starting node a sequence of relationship type expressions segmented by

“[]” or “[[]]” with local hopcounts, denoting the pattern of relationship types required to grant

authorization, whereas hopcount describes the maximum distance between the accessing user and

the target on the graph. Within each path segment there is a local hopcount defining the maximum

distance requirement for the particular piece of relationship type expression. In some policies,

path can be left blank to indicate only the starting node can access. With the use of U2R and

R2R relationships, the distance between two users on the graph may be growing significantly.

The notion of distance in U2R and R2R relationships is somewhat different from that of U2U

relationships. For example, suppose Alice and Bob are friends and Bob owns a photo and Dave is

tagged to the photo. Here, the distance between Alice and Bob is 1 and distance of Bob and Dave

is 2. While the distance between Alice and Dave is 3, this combined distance is not as meaningful

as individual U2U and U2R/R2R distances. Therefore, we may want to omit the distance created

by resources by introducing the “skipping” notation, denoted “[[]]”, which means that the local

hopcount stated inside “[[]]” will not be counted in the global hopcount. For instance, in the path

rule “([f∗,3][[c∗, 2]], 3)”, the local hopcount 2 for c∗ does not apply to the global hopcount 3, thus

allowing f∗ to have up to 3 hops.

Conflict Resolution Policies (CRP). Due to the nature of policy individualization, multiple

policies applicable to authorization of an access request may result in decision conflicts in many

scenarios. We assume that policies specified by the system will always be unambiguous so there
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Table 6.3: URRAC Grammar for Graph Rules

GraphRule → “(”StartingNode“, ”PathRule“)”
PathRule → PathSpecExp |PathSpecExp Connective PathRule
Connective → ∨ |∧
PathSpecExp → PathSpec |“¬”PathSpec
PathSpec → “(”Path“, ”HopCount“)” |“(”EmptySet“, ”HopCount“)”
HopCount → Number
Path → [“[”TypeSeq“]”|“[”TypeSeq“, ”HopCount“]” |“[[”TypeSeq“, ”HopCount“]]”]+
EmptySet → ∅
TypeSeq → TypeExp {“· ”TypeExp}
TypeExp → TypeSpecifier |TypeSpecifier Quantifier
StartingNode → ua|uc|t
TypeSpecifier → σ1|σ2| . . . |σn|σ−1

1 |σ−1
2 | . . . |σ−1

n |Σ where Σ={σ1,σ2,. . .,σn,σ−1
1 ,σ−1

2 ,. . .,σ−1
n }

Quantifier → “ ∗ ”|“?”|“ + ”
Number → [0− 9]+

are no conflicts within PSys. Conflict resolution policies are then responsible for interpreting how

the potential policy conflicts within each category of PAS , PTU , PTS PO and PP can be resolved in

terms of the precedence or connectives over relationship types. Relationship precedence is used to

produce a collective result from multiple policies specified by users with different relationships to

the policy holder. To resolve conflicts, we consider three simple and intuitive approaches: disjunc-

tive, conjunctive or prioritized. In a disjunctive approach, satisfying any of the involved policies

guarantees access. While for some sensitive contents, it is more meaningful to conjunctively query

all the involved policies so that authorization is only allowed by satisfying the requirements of

every policy. Whereas, if parental control is facilitated, parents’ policies always get priority over

children’s policies. We write ∨, ∧ and > to denote disjunction, conjunction and prioritized or-

der between relationship types, whereas the symbol @ represents a special relationship “null” that

denotes “self”.

Let us consider some examples of conflict resolution policies as follows.

〈read−1, (own ∧ tag)〉
Both the owner’s and the tagged users’ “read−1” policies over the photo are honored.

〈friend_request, (parent > @)〉
When child attempts friendship request to someone, parents’ policies get precedence over
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child’s own will.

〈share−1, (own ∨ tag ∨ share)〉
A weblink is sharable if either the original owner, or any of the tagged users or shared users

allows.

While evaluating an access request, if the decision module discovers two or more opposing

policies from the same policy set, it looks up the corresponding conflict resolution policy for the

action to determine how to reconcile the conflict. Note that conflict resolution policies only ap-

ply to the conflicting policies from the same policy category, the decision module still takes the

conjunction of PAS, PTU , PTS, PO, PP and APSys to make a final decision.

6.3.3 Access Evaluation Procedure

Algorithm 6.1 specifies how the access evaluation procedure works. After a session of a user s

requests an act against target(s) T , say (s, act, T ), the access decision module first collectively

assembles s’s session policy about act, a collection of act−1 policies from each target in T and

the system-wide policies over act and object type, if target is an object. Once all the necessary

policies are collected, the decision module extracts each path spec from the graph rules, determines

the starting node and the evaluating node, and runs path checking for each path spec using the

algorithm similar to one introduced in Chapter 4. The evaluation result of each policy is derived

from combining the result of each path spec in the policy. Due to possible conflicts between the

results of multiple policies, the decision module looks up the system-defined conflict resolution

policies to resolve conflicts and compose the final result, and then determines the access.
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Algorithm 6.1 AccessEvaluation(s, act, T )
1: (Policy Collecting Phase)

2: s.PAS(act) ← s’s policy for act
3: if (T ∩ TU) �= ∅ then

4: T.PTU (act
−1) ←

|T∩TU |⋃

i=1
tui.PTU (act

−1)

5: if (T ∩ TS) �= ∅ then

6: T.PTS(act
−1) ←

|T∩TS|⋃

j=1
tsj .PTS(act

−1)

7: if (T ∩O) �= ∅ then

8: T.PO(act
−1) ←

|T∩O|⋃

k=1

ok.PO(act
−1)

9: if (T ∩ P ) �= ∅ then

10: T.PP (act
−1) ←

|T∩P |⋃

l=1

pl.PP (act
−1)

11: if (T ∩O) �= ∅ then

12: PSys(act) ←
|T∩O|⋃

k=1

PSys(act
−1, ok.type)

13: else
14: PSys(act) ← system’s policy for act
15: (Policy Evaluation Phase)

16: for all policy in s.PAS(act), T.PTU (act
−1), T.PTS(act

−1), T.PO(act
−1), T.PP (act

−1) and PSys(act)
do

17: Extract graph rules (start, path rule) from policy

18: Get the controlling user uc, if the policy is not specified by s or any t ∈ T
19: for all graph rule extracted do
20: Determine the starting node, specified by start, where the path evaluation starts

21: if graph rule is extracted from s.PAS(act) and PSys(act) then
22: if start = s then
23: uc and every t ∈ T becomes the evaluating node

24: else
25: every t ∈ T becomes the evaluating node

26: else
27: s becomes the evaluating node

28: Extract path rules path rule from graph rule

29: Extract each path spec path, hopcount from path rules

30: Path-check each path spec for each pair of starting and evaluating node

31: Evaluate a combined result based on conjunctive or disjunctive connectives between path specs

32: Compose the final result from the result of each policy using CRPSys

6.3.4 Hopcount Skipping

According to the classic idea of “six degrees of separation” and the results of “small world exper-

iment” [44, 53], any pair of persons are distanced by about six people on average. A recent study
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by Backstrom et al [2] further indicates that on the current social graph of Facebook, the average

distance has shrunk to 4.74. Therefore, the network of U2U relationships is characterized by short

path lengths, and the hopcount limit in a practical policy is not likely to be a large number. In

contrast, U2R and R2R relationships may exhibit a different characteristic. For example, comment

may be followed up by a sequence of comments, which may take a long journey for the author of

the first comment to reach the author of the last comment. For this and similar cases, we introduce

the “skipping” of hopcount limit of resource-related relationships, which differentiates the global

hopcount limit on U2U relationships only from the possible long distance of the resource-related

relationships that are found in two entities involved in request.

6.4 Use Cases

Given the social graph depicted in Figure 6.3, below we show how access control of these examples

can be realized within the model.

Example 1: Run into a new acquaintance in a photo. Alice and Dave are strangers. Dave

realizes that Alice and him both commented on Bob’s photo, so he decides to poke her to say hello:

(Dave, poke, Alice)

We need the following policies to determine authorization:

• Dave’s PAS(poke):

〈poke, (ua, ([Comment][[CommentTo·CommentTo−1, 2]][Comment−1], 2))〉

• Alice’s PTU(poke
−1):

〈poke−1, (t, ([Comment][[CommentTo·CommentTo−1, 2]][Comment−1], 2))〉

• PSys(poke): 〈poke, (ua, ([Σu_r][[Σr_r∗, 2]][Σu_r], 2))〉

The comments from Alice and Dave are connected through Bob’s photo with two R2R rela-

tionships. Dave’s policy says that he is free to poke his fellow commenter, while Alice allows
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her fellow commenter to poke her. The system facilitates many kinds of participating users (e.g.,

comment, like, share, etc.) to poke each other.

Example 2: View a photo where a friend is tagged. Bob and Ed are friends of Alice, but not

friends of each other. Alice posted a photo and tagged Ed on it. Later, Bob sees the activity from

his news feed and decides to view the photo:

(Bob, read, Photo2)

In this example, Bob is trying to access a resource through his friend Alice. Whether his request

can be granted or not depends on the corresponding policies from himself, the target resource and

the system.

• Bob’s PAS(read): 〈read, (ua, ([Σu_u∗, 2][[Σu_r, 1]], 2))〉

• Photo2’s PO(read
−1) by Alice: 〈read−1, (t, ([post−1, 1][friend∗, 3], 4))〉

• Photo2’s PO(read
−1) by Ed: 〈read−1, (uc, ([friend], 1))〉

• APSys(read): 〈read, (ua, ([Σu_u∗, 5][[Σu_r, 1]], 5))〉

• CRPSys(read): 〈read−1, (own > tag)〉

Bob, as the access requester, allows himself to read any resource that has a direct relationship with

his contacts within two hops. Note that “[[]] indicates that the local hopcount “1” is not counted

in the global hopcount limit “2”. Alice is the original owner of the photo and Ed’s image is on it,

so based on our default policy, both of them are able to express their own preferences on how the

photo should be exposed to others. Alice decides to share the photo with all her direct and indirect

friends within three hops, while Ed prefers to keep his privacy and only wants his direct friends to

see it. The system, on the other hand, specifies a more liberal rule to promote sharing that allows

a user to access resource that relate to his contacts within five hops. We notice that Alice and Ed’s

authorization policies are apparently in conflict, which needs to be resolved. CRPSys(read) says

that owner’s policy takes precedence over tagged user’s, so the decision module will ignore Ed’s
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policy and only consider Alice’s policy. A system may configure CRPSys(read) with conjunction

or disjunction of the owner’s and tagged users’ policies for different decisions.

Example 3: Friend recommendation. Alice is a friend of Bob, Paul follows Bob, while Alice

and Paul are strangers. Bob would like to recommend Alice and Paul to be friends:

(Bob, suggest_friend,Alice, Paul)

Policies applied to this example are shown as follows:

• Bob’s PAS(suggest_friend): 〈suggest_friend, (ua, ([Σu_u∗], 2))〉

• Alice’s PTU(suggest_friend
−1): 〈suggest_friend−1, (t, ([friend], 1))〉

• Paul’s PTU(suggest_friend
−1): 〈suggest_friend−1, (t, ([friend∗], 2))〉

• PSys(suggest_friend): 〈suggest_friend, (ua, ([Σ∗], 2)) ∧ (t, ([Σ∗], 2))〉

The access request contains two targets Alice and Paul, so we need target user policies from

both of them. Bob can suggest friends for his contacts within two hops. Alice welcomes friend

recommendation from her direct friends, while Paul allows his friends of friends to do that. The

system-specified policy is more liberal, allowing users with any relationship of two hops to be able

to suggest friends (e.g., two people who commented on the same photo).

Example 4: Parental control of policies. The system features parental control such as allow-

ing parents to configure their children’s policies. The policies are used to control the incoming

or outgoing activities of children, but are subject to the parents’ will. For instance, Bob’s mother

Carol requests to set some policy, say Policy1 for Bob:

(Carol, specify_policy, Policy1)

The following policies are used to make access decision:

• Carol’s PAS(specify_policy): 〈specify_policy, (ua, ([own], 1) ∨ ([child· own], 2))〉

• Policy1’s PP (specify_policy−1) by Bob: 〈specify_policy−1, (t, ([own−1], 1))〉
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• PSys(specify_policy): 〈specify_policy, (ua, ([own], 1)∨([child· own], 2))〉

• CRPSys(specify_policy): 〈specify_policy, (parent ∧@)〉

Carol’s policy offers her the ability to define her and her child’s policies. Bob only allows

himself to manage his own policies. The system enables parental control with the child’s consent,

so that parents can control their children’s policies.

6.5 Related Works on Policy Conflict Resolution

There is substantial literature on conflict resolution of access control policies, especially in dis-

tributed systems, database systems and collaborative environments. Simultaneous presence of con-

flicting policies can be resolved by various strategies, such as permissions-take-precedence [36,37],

denials-take-precedence [7, 36, 37], specificity precedence [6, 20], recency precedence, strong

authorization overriding weak authorization [5, 6, 48], or explicit specification of policy prior-

ity [3, 19, 50], etc. Most conflicts discussed in this literature are conflicts between positive and

negative authorizations (permissions vs. prohibitions) typically arising due to generality or speci-

ficity of the applicable policy in a hierarchy. However, in OSNs possible policy conflicts will likely

arise due to policies specified by distinct users carry contrasting authorization.

In OSN systems, as long as each user can specify individual policies, policy conflicts become

inevitable. [51] applied game theory to a solution for collective policy management in OSNs,

where data resources may belong to multiple users. [34] proposed a formal model to address multi-

party access control in OSNs with a policy conflict resolution mechanism based on voting scheme

to deal with collaborative policies. In this approach, the release of a resource depends on the

sensitivity scores assigned by each controlling user and the chosen decision making strategy, such

as setting a sensitivity threshold, owner-overrides and full-consensus-permit. Although policy

conflict resolution is not the main focus of this dissertation, it is necessary to explicitly express an

unambiguous strategy, whether a conjunction, a disjunction or a prioritized order of relationships

between the policy specifiers and the user or resource the policies apply to.
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Chapter 7: CONCLUSION

The following sections summarize contributions of this dissertation and discuss some future re-

search directions that can be further studied.

7.1 Summary

In this work, we proposed a U2U relationship-based access control (UURAC) model for OSNs

and a regular expression based policy specification language, which gives greater generality and

flexibility in policy specification than prior models did. We also provided two path-checking al-

gorithms based on DFS and BFS traversals, and established the correctness and complexity. Due

to the sparseness nature of social graph, given the constraints on relationship types and hopcount

limit, the complexity of the algorithms can be dramatically reduced. We demonstrated the feasibil-

ity of our approach by discussing a proof-of-concept implementation of both algorithms, followed

by the evaluation results.

We extended the UURAC model to incorporate attribute-based policies for determining access.

Attribute information of users and their relationships are as important as the social graph in OSNs

with respect to access control. We formalized the attribute-based policies and extended the gram-

mar for policy specifications. The policy language supports expressing requirements on attributes

of some or all of the users and relationships on the path.

We also further included U2R and R2R relationships in policies and developed URRAC model

that provides finer-grained access control for users’ usage and administrative access. Specifically,

we introduced the skipping of some relationship path expression in policy specification in order to

offer more expressive policies. The decision modules of the system determine authorizations by

retrieving different policies from the access session, the target and the system, and then making a

collective decision. Conflict resolution policies are applied to address policy conflicts.

77



7.2 Future Work

There are several opportunities for extending the work presented in this dissertation.

To improve the versatility of ReBAC, it is possible to capture some unconventional relation-

ships found in OSN systems, including temporary relationships and one-to-many relationships.

The attribute-aware ReBAC model also needs to be adjusted accordingly to express the attributes

of such new relationships.

We scoped out the access control problem regarding third party applications in OSNs in this

work, which could be an important topic to be addressed in the future. Social network platforms

and third party applications have made the popularity of OSN systems soar, but also pose serious

risk in that rare control has been provided over disclosure of user data to the applications and these

applications often gain much more privileges than necessary. We have made some initial progress

on this topic so far [18], and will continue to work on applying relationship-based access control

to solve the problem.

In Chapter 6, we considered system-specified conflict resolution policy to resolve conflicts be-

tween authorization policies. Since the system is the only one responsible for making policy, such

conflict resolution will be unambiguous and will not conflict with itself. A further potential area of

research is to design user-specified conflict resolution policy. This would allow more flexible and

finer-grained control, as the policy is specified by users and applies to a smaller context.
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